POSEIDON

Risk Management and Data Analysis in PoSeID-on

Presenters:
Paulo Silva
Rui Casaleiro

July 11th, 2019

Funded by Horizon 2020
Framework Programme of the European Union
INDEX

1. The PoSeID-on platform
2. R&D Challenges
3. Risk Management Approach
4. Data Analysis
PoSeID-on

Protection and control of Secured Information by means of a privacy enhanced Dashboard
PoSeID-on Goals

- Empower data subjects
- Safeguard personal data
- Data minimization and data quality
- Detection of unexpected and potentially harmful behaviours
Our challenge

Detection of unexpected and potentially harmful behaviours
Approach

- Model normal behaviour of PoSeID-on
- Analyse contents of PII related operations
Risk Management Module Goals

• **Model normal system behavior**
 • While being as decoupled and less intrusive as possible

• **Generate warnings each time a possible privacy risk is happening**
 • By identifying anomalous patterns in system operations

• **Manage data processor reputation**
 • According to previous good risk generating behavior
RMM Approach

Model system behaviour based on:

- Type of operations performed in the system
 - PII Permission Request, PII Access, PII Permission Revocation…
- Logs generated by each component in the system

Notify system administrators and data subjects when the pattern extracted from such info deviates from the regular pattern
T4.3 RMM – Anomaly Detection

Log collection
- Messages from components

Log parsing
- Generate log event templates
- Fit each log into one of the template events

Feature extraction
- Count number of events happening within a window (e.g. hourly window)
- Count number of PII operations of each type happening within a window

Anomaly detection
- Create a model from regular event count per window using clustering algorithms
- Predict cluster for upcoming logs
- Determine distance from predicted cluster and clusters with small number of entries in order to identify anomalies
- Update model according to new values
T4.3 RMM – Anomaly Detection

Output:
A window (sequence of events) which has been flagged as anomalous or in other words, not fitting in the regular behavior of the system. This might be:

- A privacy risk
- A system malfunction
- A non-malicious but rare pattern of logs

Further analysis of the identified anomalies is needed to determine if a risk is real or not.
T4.3 RMM – Anomaly Detection

Identifying which Data Subjects and Data Processors are involved in the anomalous window allows:

- Updating data processor reputation accordingly
- Notifying involved data subjects
T4.3 RMM – Log Anomaly Detection

1. **Log Collection**

1. 2008-11-09 20:55:54 PacketResponder 0 for block blk_321 terminating
2. 2008-11-09 20:55:54 Received block blk_321 of size 6708864 from /10.251.195.70
4. 2008-11-09 20:55:54 Received block blk_321 of size 6708864 from /10.251.126.5
5. 2008-11-09 21:56:30 10.251.126.5:5000:0:Got exception while serving blk 321 to /10.251.127.243:
6. 2008-11-10 08:58:04 Verification succeeded for blk 321

2. **Log Parsing**

Event Templates:
- Event 1: PacketResponder * for block * terminating
- Event 2: Received block * of size * from *
- Event 3: *Got exception while serving * to *
- Event 4: Verification succeeded for *
- Event 5: Deleting block * file *

Log Events:
- Log 1 → Event 1
- Log 2 → Event 2
- Log 3 → Event 3
- Log 4 → Event 4
- Log 5 → Event 5
- Log 6 → Event 5

3. **Feature Extraction**

Fixed windows:

Event Count Matrix
- [0 2 1 1 1 1 2 1 2 1 0 0 1 2 0 1 1 0 2 1 0]

4. **Anomaly Detection**

RMM Architecture

Simplified Lambda Architecture

- Speed layer returns results in real-time by analysing the stream
- Batch layer stores incoming data, performs analysis over a larger dataset and trains models
- Service layer handles results, involved data subject identification and reputation metric requests
T4.3 RMM – Current status

Detailed design and architecture - 100%

Implementation - 50%

- Communication protocol (Libsodium + Protobuf)
- Integration of RabbitMQ with Spark Streaming
- Log analysis for anomaly detection pipeline
 - Extracting parameters from messages and format them to proper data structure
 - Java implementation of Drain Log Parser algorithm, adapted to work on Spark Streaming Pipeline
 - Creation of feature vector to feed clustering algorithms
T4.3 RMM - Next Steps

• Dataset Generation
• Development
 • Implementing anomaly detection
 • Implementing storage for parsed data
 • Adapting stream pipeline to batch layer
• Configuration
 • Distributed deployment
 • Security aspects
• Testing and validation
Personal Data Analyser - PDA

- **Control personal data in a transaction**
 - Personally Identifiable Information (PII)

- **Natural Language Processing & Understanding**
 - Extracting and processing information from transactions

- **Artificial Intelligence**
 - Analyze and evaluate the extracted information
PDA Goals

- **Control personal data in a transaction**
 - Detect or prevent anomalies on misbehaved transactions

- **Generate warnings each time a transaction contains non-identified PII**
 - Discovering PII and making sure existing PII is compliant with permissions

- **Generate privacy risks warnings**
 - PII analysis based on its unique degree of sensitiveness
 - PII analysis based on the correlation with other PII fields
PDA Approach

- **Analysis requests**
 - Transactions performed within PoSeID-on
 - Connection to PoSeID-on’s central messaging protocol

- **Request Handling**
 - Messaging protocol
 - Protocol Buffers (protobuf)
 - Libsodium (PyNaCl)
 - RabbitMQ (pika)

- **Data extraction and parsing**
 - NLP tools
 - NLTK, Stanford CoreNLP, SpaCy

- **Data analysis**
 - ML Models for Named Entity Recognition
 - Regular Expressions

- **Privacy risks analysis**
 - PII sensitiveness
 - PII correlation
 - DP’s reputation
PDA PII Analysis

<table>
<thead>
<tr>
<th>PII Fields</th>
<th>MEF</th>
<th>Softeam</th>
<th>Santander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>First name</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Last name</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Email address</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Street name</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Street number</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Post code</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>City</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Country</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Social security number</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Bank details</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment contract and salary information</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>License plate number</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>National ID numbers</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Date of Birth</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Passport number</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
PDA Architecture

- **Incoming Requests**
 - Dashboard
 - RMM
 - Data Processor API

- **Pipeline**
 - Request Handling
 - Data Extraction / Parsing
 - NLP Processing
 - Privacy Risks Analysis
PDA Current Status

- **Message Bus**
- **Message Handling**
- **Data Extraction / Parsing**
- **NLP Processing**
- **Integration**
 - Containerization
 - Minikube
T4.3 PDA - Next Steps

Development
- Tests and Validation
- Create in-house models
 - With information provided by partners
 - PII Specific Information
- Assessment and implementation of privacy metrics to be used in the analysis
- ML Reasoning Unit development

Finalize first integration stage
- Module communication, Minikube configuration

Papaya collaboration
- Privacy-preserving Neural Networks (NN)
- To allow a data owner either to:
 - Classify data
 - Collaboratively (with other data owners) train neural networks (NN) while ensuring data privacy
- Analyze the requirements and conclusions taken from today’s bilateral meeting
Final Considerations

- Development and integration progress
- State-of-the-art technologies
- GDPR compliance
- Public documentation available by the end of the month
THANK YOU