

PoSeID-on

Protection and Control of Secured Information

by Means of a Privacy Enhanced Dashboard

GRANT AGREEMENT NUMBER: 786713

 H2020-DS-2016-2017/DS-08-2017

 Deliverable 3.1

PoSeID-on blockchain - Interim implementation

Disclaimer

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 786713. This document has been prepared for
the European Commission. However, it reflects the views only of the authors, and the Commission
cannot be held responsible for any use which may be made of the information contained therein.

PoSeID-on blockchain - Interim implementation

Project Title: PoSeID-on

Deliverable Number: D3.1

Grant Agreement number: 786713 H2020-DS-2016-2017/ DS-08-2017

Funding Scheme: HORIZON 2020

Project co-ordinator name:
Francesco Paolo Schiavo – MEF (Italian Ministry of

Economy and Finance)

Title of Deliverable: PoSeID-on blockchain – Interim implementation

WP contributing to the

Deliverable:
WP3 Blockchain and Smart contracts

Deliverable type R – Report

Dissemination level PU - Public

Partner(s)/Author(s):

I. Gutierrez, S. Anguita, C. Cortés (TECN), J. van Rooij

(JIBE), R. Manzo, B. Intonti, N. Bucello (ACN), P. Silva, R.

Casaleiro, M. Curado (UC), M. P. Verzillo, D. Reccia (ELEX)

History:

Ver. Comments Date Author

0.0 Draft version 28/01/2019 C. Cortés (TECN)

0.1 TOC 04/02/2019 I. Gutiérrez (TECN)

0.2 Information added 23/07/2019 all

0.3 Final version for internal review 25/07/2019 all

1.0 Final version ready for delivery 30/07/2019 all

Project funded by the European Commission Horizon 2020 -
The EU Framework Programme for Research and Innovation.

The PoSeID-on Consortium consists of following partners identified in the table

provided next:

Table 1 - Consortium Partners

Logo Name Country

MEF – Ministero dell’Economia e delle Finanze Italy

 ACN - Accenture S.p.A. Italy

 PNO – PNO Innovation Belgium

 ELEX – e-Lex Studio Legale Italy

 TECN – Fundación Tecnalia Research & Innovation Spain

 SAN – Ayuntamiento de Santander Spain

 SOFT - Softeam France

 UC – Universidade de Coimbra Portugal

 JIBE – SMARTFEEDZ B.V. Holland

MITA – Malta Information Technology Agency Malta

Executive Summary

This deliverable builds on the results of the initial version of the low level-design and
implementation for the Blockchain and Smart Contracts Module developed at Task 3.1 (“Privacy
ensuring Permissioned BC implementation”), Task 3.2 (“Private data managing smart contracts
implementation”), Task 3.3 (“BC Client implementation”) and Task 3.4 (“API Gateway
implementation”), providing a description of the core mechanisms that will support the privacy
protection and control of secured information of the users in PoSeID-on, based on distributed
ledger technology.

The goal of Blockchain and Smart Contracts design and implementation is to provide PoSeID-on
with a solution that enhances the privacy protection and the security of the way Data Subjects
are providing and managing the permissions to access their personal data. These mechanisms
will rely in a distributed ledger technology supported by a permissioned Blockchain network and
a series of secure Smart Contracts that will be elaborated for enabling privacy of the personal
identifiable information and data of the end-users.

As it is shown in the state-of-the-art, Blockchain techniques are being applied in different
governments. So that, it exists the necessity to accomplish with the GDPR, specially with art.17,
where PoSeID-on has ended up with a solution using burnable pseudo-identities, as well as the
use of the relationship between transports keys and the Blockchain keys.

The requisites to be covered during the components’ design and development undertaken inside
the WP3 are translated into a section explaining the detailed development design that arises from
the WP2 output architecture. The flows and interactions from the requisites’ actions (list, grant,
revoke, request and check) will be further explained and analyzed there.

To permit the actions and notifications present in the requisites, a correct key management and
user anonym system definition are mandatory. To fulfill that need, consequent sections will be
created in this document.

This set of definitions, designs and interactions will be later developed, and that development will
lead in a prototype also detailed in this document.

This document will also provide a final glimpse of the integration works affecting the Blockchain
and DP API created components, broaden and detailed in the WP5 appropriate document.

The necessary network infrastructure and services that will be constructed to constitute the
permissioned blockchain and the platform APIs, and that work will be reflected in this document.

TABLE OF CONTENTS

Executive Summary ... 5

PoSeID-on Terminology/Glossary ... 9

1. Introduction.. 11

 Scope and Relation with the PoSeID-on Workplan ... 11

 Structure of the Document .. 11

2. Analysis of System Requirements Coverage .. 12

3. State-of-the-art in Blockchain technology for eGoverment services 16

4. Architecture and Detailed Design ... 18

 Architecture Overview ... 18

 Design .. 21

4.2.1. Cloud-based Permissioned Blockchain .. 22

4.2.2. Account Manager .. 25

4.2.3. Smart Contract Basics ... 34

4.2.4. Blockchain Client Flows ... 36

4.2.5. Data Processor API ... 46

 Development status .. 48

 Security remark .. 50

5. Initial Prototype of Blockchain Functionality .. 51

 Smart Contracts and Blockchain functionalities .. 51

5.1.1. Smart Contracts .. 51

5.1.2. Blockchain Functionalities .. 53

5.1.3. Key Management .. 56

5.1.4. Blockchain Client ... 60

6. Integration in PoSeID-on architecture .. 61

 Packaging ... 61

 Configuration .. 62

 Communication ... 62

 Data Storage .. 64

 Example of the Integrated Use Case between two pilots.. 64

7. Innovation summary ... 65

8. Conclusion .. 66

9. References ... 67

Annex I. Blockchain API formal documentation ... 69

LIST OF FIGURES

Figure 1 - Main modules of the PoSeID-on system ...19
Figure 2 - Detail of the modules - Technical overview of the system20
Figure 3 - Final components in the Blockchain architecture first design21
Figure 4 - Quorum Logical Architecture Diagram ..24
Figure 5 - Flow throw the Burnable Pseudo-Identities Solution Implementation26
Figure 6 - Request ID & Request Payload ..27
Figure 7 - Account generation simplified flow diagram ..30
Figure 8 - Account recovery flow diagram. ..32
Figure 9 - Steps to be followed from the ledger transaction flow according to official
documentation [29] guidelines. ..33
Figure 10 - PoSeID-on General Architecture ..37
Figure 11 - BC API authentication diagram ..39
Figure 12 - New Data Subject registration diagram ..40
Figure 13 - Data Subject account recovery/regeneration diagram ..41
Figure 14 - Access permissions granted by Data Subject diagram ..42
Figure 15 - Grant access permissions to Data Processor diagram ...43
Figure 16 - Revoke access permissions to Data Processor diagram ..44
Figure 17 - Request access permissions to Data Processor diagram45
Figure 18 - Batch permissions interaction to Data Processor diagram46
Figure 19 - Communication between PoSeID-on and the Data Processor API48
Figure 20 - Internal Permission Model and Flow ...52
Figure 21 - Multiple account generation algorithm for Burnable Identities and Key rotation support
[33] ...59
Figure 22 - HDwallet creation example [34] ...60
Figure 23 - JSON-RPC message exchange example ..60
Figure 24 - Default Blockchain Client Implementation for Standard Quorum Implementation ...61
Figure 25 - Blockchain Client Implementation for PoSeID-on platform....................................61
Figure 26 - Data Processor’s Blockchain Module ...63
Figure 27 - Integration with Message bus diagram ...63
Figure 28 - Integrated Use Case between two pilots ..64

https://d.docs.live.net/64ce29445d179a2d/POSEIDON%20Project/Work%20Packages%20-WPs/WP3%20-%20Blockchain%20and%20Smart%20Contracts/D3.1/D3.1_draft_POSEIDON_v03.docx#_Toc15402723
https://d.docs.live.net/64ce29445d179a2d/POSEIDON%20Project/Work%20Packages%20-WPs/WP3%20-%20Blockchain%20and%20Smart%20Contracts/D3.1/D3.1_draft_POSEIDON_v03.docx#_Toc15402726

LIST OF TABLES
Table 1 - Personal data protection requirements ..13
Table 2 - BC Technology applied in some regions ..18
Table 3 - Development status ..49
Table 4 - Legend ...49
Table 5 - Permission Status / Description ..52
Table 6 - BC Functionalities ..53
Table 7 - Request PII Permission ..53
Table 8 - Grant PII Permission ...54
Table 9 - Revoke PII Permission ...54
Table 10 - Check PII Permission ...55
Table 11 - PII Access Notification ...55
Table 12 - Other non-related functionalities ...56

PoSeID-on Terminology/Glossary
This section complements the list of acronyms already provided, presenting short definitions

and/or descriptions of selected terms used throughout this deliverable. While some of these terms

are generic (e.g. blockchain, GDPR), most are specific from the PoSeID-on project and extensively

used in the technical discussions along this document.

• Administrator – person or persons responsible for configuring, operating and maintaining

the PoSeID-on platform.

• Advanced Message Queuing Protocol (AMQP) - is an open standard application layer

protocol for message-oriented middleware.

• Anonymization – the process of removing personal identifiers that may lead to a Data

Subject being identified.

• Blockchain - distributed digital ledger of cryptographically signed transactions that are

grouped into blocks.

• Blockchain API – an interface that abstract all blockchain operations into a high-level

application programming interface.

• Burnable pseudo-identities – pool of pseudo-identities of Data Subjects that can be erased

on user request in order to unlink PII or PII metadata from its Data Subject.

• Cryptographic Hash Function – a one-way (i.e., irreversible) function that takes as input

a variable length bit stream and produces a fixed-size random-like output. Cryptographic hash

functions are also collision resistant, i.e., they are constructed so that it is computationally

infeasible to find any two distinct inputs that map to the same output.

• Data Processor (DP) – an entity that processes or stores PII data and that can also

determine the purposes, conditions and means for processing PII data.

• Data Processor API – an API made available by Data Processors to interface with their PII

database, and that is also used by Data Processors to access the PoSeID-on platform.

• Data Subject – a natural person that represents the primary target of GDPR.

• eIDAS (electronic IDentification, Authentication and trust Services) - is an EU

regulation and a set of standards on electronic identification and trust services for electronic

transactions in the European Single Market.

• GDPR – General Data Protection Regulation, (EU) 2016/679 - is a regulation in EU law

on data protection and privacy for all individuals within the European Union (EU) and the

European Economic Area (EEA).

• Message bus – a combination of a common data model, a common command set, and a

messaging infrastructure to allow different PoSeID-on components to communicate through

a shared set of interfaces.

• NoiPa - NoiPA is the IT system provided by the Ministry of Economy and Finance to manage

the processes of processing, settlement and consultation of salaries of staff of the Public

Administration.

Through the NoiPA portal, public employees can consult a series of documents regarding their
job position.

• Permissioned Blockchain - a blockchain where every node and every user must be granted

permissions to utilize the system. Permissions are generally assigned by an administrator.

• Personal Identifiable Information (PII) – information related to a Data Subject, that can

be used to directly or indirectly identify the person.

• PII metadata – a set of data that describes and gives information about PII data. Depending

on circumstances, metadata may be privacy-sensitive and require the same privacy protection

mechanisms that are applied to PII.

• PII Value – an instantiation of a PII Type, such as ‘John’, ‘Smith’, ‘June 5th, 1959’, or even

an entire document, such as a signed contract, etc.

• Pseudonym – an alternate name for a Data Subject so that he/she cannot be directly

identified. Identification can still be done with the use of additional data that, typically, is kept

outside the main system.

• Risk Management Module – a PoSeID-on component that assesses and manages privacy

risks by analysing transactions information.

• Smart Contract – code (functions) and associated data (state) that automatically execute

the terms of a contract, without third parties’ intervention, and that is deployed using

cryptographically signed transactions on a blockchain network.

• Web-Based Dashboard – a web application that gives Data Subjects access to the PoSeID-

on platform.

1. Introduction

This deliverable will include an initial version of the PoSeID-on Blockchain network design,
including the implementation of the Private Data management Smart Contracts and the
Blockchain client that allows to access the network. Finally, the Gateway Module design is included
to provide cloud support for the services that use the PoSeID-on platform.

 Scope and Relation with the PoSeID-on Workplan

This report is the first deliverable of Work Package WP3 (“Blockchain and Smart Contracts”). It
has been produced within the scope of Task 3.1 (“Privacy ensuring Permissioned BC
implementation”), Task 3.2 (“Private data managing smart contracts implementation”), Task 3.3
(“BC Client implementation”) and Task 3.4 (“API Gateway implementation”, now referred as “Data
Processor API”), and its goals are fourfold:

• The development of the permissioned blockchain network as a distributed and secure
means for personal data transactions;

• The development of the smart contracts that ensure privacy of personal data
transactions in the blockchain. The smart contracts will be self-executing code in the
blockchain that can be verified by the participants in the blockchain to enable the
enforcement of user (data subject) defined permissions over specific data, whenever data
controllers or data process would ask access to them;

• The development of the blockchain client that enables the user control and get informed
on the status of transactions in the blockchain. This blockchain client will be integrated
with the general Web-based Dashboard that provides additional features to the end-user
such as risk assessment and personal data identification;

• The development of APIs for accessing to the cloud where users’ wallets and optionally
personal data are saved.

This deliverable will include the description of an initial version of the PoSeID-on blockchain
network, including the initial smart contracts and blockchain client implementation, as well as the
Data Processor API Module.

 Structure of the Document

The rest of this deliverable is structured as follows:

Section 2 provides an analysis of the requirements coverage that must have been done at the
end of the WP3 works. This is an introduction to the objectives to cover during the WP3 that will
allow readers less familiar with the PoSeID-on project to understand the rationale behind the
identified requirements. It also presents a set of guidelines, agreed between the project partners,
that has been considered in the definition of the architecture. That architecture guidelines will
conduct the design and implementation decisions affecting the Blockchain and API Gateway
modules addressed in this Work Package.

Section 3 provides the state-of-the-art in Blockchain technology for eGoverment services. It
begins with a general definition regarding Blockchain technology, giving the main characteristics
and relating the Blockchain technology chosen, continue listing some different ways in which

governments have been applied this technology and finalize with examples applied along different
regions.

Section 4 provides firstly and Architecture overview and follows describing the final design
chosen, detailing the Cloud-based permissioned Blockchain, the account manager (mentioning
the importance of the GDPR for this module), the smart contracts, the Blockchain client flows and
the Data Processor API. It ends up explaining the development status and describing the security
remarks.

Section 5 provides the description of the Initial Prototype of Blockchain Functionality, describing
deeply about Smart Contracts and Blockchain functionalities, Key Management plan and
Blockchain Client.

Section 6 provides a general description of the integration for the obtained components
(containers and images) in the overall PoSeID-on architecture. It will enclose the packaging,
configuration, storage and communication activities. These integration works, affecting the
Blockchain and DP API, broadening and detailing will be done in the appropriate document of the
WP5.

Section 7 provides the innovation key points achieved during the WP3 development and their
alignment with the overall PoSeID-on scientific objectives. This is a translation of the work done
inside the WP3 tasks, that will result on the Blockchain and the DP API software modules.

Section 8 provides the conclusion of the work done during the making of this deliverable. Further
works aligned with the deliverable are envisioned.

Section 9 provides the references that are needed to follow the document explanations. They
contain the knowledge of external systems, technologies and research.

Annex I provides the formal documentation to interact with the Blockchain API from any external
component, and subsequently, with the Blockchain platform and Smart Contract functions
themselves.

2. Analysis of System Requirements Coverage

In this section, the system requirements coverage is analyzed. The input for the section is the
“requisites” table developed at the WP2. The requirements affecting the Blockchain network
components, the Smart Contract coding and the Data Processor API have been extracted from
that table to work over them. Extracting those items will help to focus the work done in this
deliverable.

The requirements affecting WP3 developments, in any of the forms of caller or destination
interfaces and modules, are gathered in the list below these lines:

• List access permissions granted by Data Subject
• Grant access permission to Data Processor
• Revoke access permission to Data Processor
• Request access permissions to Data Processor

• Check access permission by Data Processor
• Notify access to permission
• Blockchain Events (Transactions validated/denied)

The first three are motivated by Web Dashboard actions, the next three are motivated by the DP
API, and the last of them is composed by events launched from actions taken inside the Blockchain
platform that might be notified to the RMM or to the PDA. The events are sent to create operation
logs regarding the risk and personal data usage analysis.

The requisites to be covered during the components’ design and development undertaken inside
the WP3 are translated into a section explaining the detailed development design that arises from
the WP2 output architecture. The flows and interactions from the requisites’ actions (list, grant,
revoke, request and check) will be further explained and analyzed there.

To permit the actions and notifications present in the requisites, a correct key management and
user anonym system definition are mandatory. To fulfill that need, consequent sections will be
created in this document.

This set of definitions, designs and interactions will be later developed, and that development will
lead in a prototype. This step will prove the accomplishment of the target system requisites.

It is also important not to forget the strong union between PoSeID-on and the GDPR. As a result

of that, the project requisites are in line with the GDPR. The Table 1 studies the linkage between

regulation provisions and the functional recommendations embraced by the WP3.

Table 1 - Personal data protection requirements

GDPR provision GDPR

reference

PoSeID-on Recommendation

Lawfulness of
collected personal
data

Lawfulness implies having
legitimate grounds for collecting
and using the personal data,
including having the
unambiguously given consent of
the individual whose personal data
are being processed and not using
the data in ways that have
unjustified adverse effects on the

individuals concerned, and each
purpose is consented separately
unless it is appropriate to merge
them.

Sensitive data concerning a
person’s race, political opinions,
religion, sexuality, genetic info and
other biometrics should be
prohibited by default unless
consent is explicitly given and
processing is necessary.

Art. 5, 6 The consent should be recorded and
a clear record of the agreement of
each data subject should be kept. An
explicit consent for sensitive data
should be requested.

Functional mechanisms should be
also set up for consent withdrawal,
implying the capability to locate and
remove the personal data during the

process and also from backups and
archives (even in cloud).

Adequateness,
relevance and
proportionality

For the purpose limitation
principle, collected data should be

adequate and relevant to the
objectives of the system of
collected personal data.
Therefore, for the data
minimization principle, only the
minimum amount of personal data

Art. 5 The collection of personal data must
be limited to what is directly relevant

and necessary to accomplish the
PoSeID-on platform specified
purpose. The purpose has to be
legitimate, and it has to be specified
and made explicit before collecting
personal data.

GDPR provision GDPR

reference

PoSeID-on Recommendation

which is needed to achieve the
specific PoSeID-on platform
purpose must be collected, used
and retained.

Accuracy of the
collected personal
data

Data has to be the right value, it

has to precisely represent the

value in consistent form and it

must be up-to-date.

Art. 5 Procedures to keep data up-to-date

should be implemented, such as the

final user validation of data.

Functional mechanisms should be in

place to check, edit and extend stored

data, with various controls concerning

secure and reliable identification,

authentication, access, validation,

etc. These mechanisms may also

affect backup and archives copies.

Storage limitation Personal data must be retained
only as long as is necessary to fulfil
the declared purpose. It must be
erased or effectively anonymised
as soon as it is not anymore
needed for the given purpose.

Art. 5 Functional mechanisms should be
able to erase specific stored data,
with various controls concerning
secure and reliable identification,
authentication, access, validation,
etc. These mechanisms may also
affect backup and archives copies.

Transparency and
openness

Being transparent about the

purpose to use the data.

Art. 12 The PoSeID-on platform should

provide appropriate information to

individuals to exercise their rights, to

data controllers to evaluate their

processors, and to Data Protection

Authorities to monitor according to

responsibilities.

Individual rights Individuals must have the

possibility of effectively and

conveniently exercise their rights

to access and rectify as well as to

block and erase their personal

data and to obtain a usable

portable electronic copy of their

personal data.

Further, they have the right to

withdraw given consent with effect

for the future.

Art. 15, 16,

17, 18, 19,

20, 21

Secure and reliable identification,

authentication and data access

should be ensured.

A withdrawing form should be

available in the platform.

A mechanism should be implemented

to identify the specific data that is to

be blocked or restricted.

Extracted data should be limited to

the identified and authenticated

person concerned and communicated

securely (e.g. encrypted).

All these mechanisms may also affect

backup and archives copies.

Automatic
processing

Subjects have the right to insist

that key decisions arising from

automatic processing of their

personal data are manually

reviewed/reconsidered.

Art. 22 Mechanisms allowing such a manual

review should be implemented.

GDPR provision GDPR

reference

PoSeID-on Recommendation

Accountability Data controllers and processors

should be able to demonstrate the

compliance with privacy and data

protection principles and legal

requirements.

Art. 24 Examples of accountability measures

are related to tracking of personal

data access and of communications

with external systems, documenting

and recording all processing

activities, mapping data flow.

Moreover, appropriate data breaches

reporting, response, assessment and

information security should be

developed.

Data security Data security addresses integrity,

confidentiality and availability

concerns.

Art. 25 From a privacy and data protection

perspective, they require a set of

rules to be applied to limit access to

personal data only to authorized

people, and to ensure that the data is

trustworthy and accurate. Therefore,

data should be kept secure applying

Privacy Enhancing Technologies (e.g.

encryption, pseudonymization,

anonymization, identity and access

management), preventing accidental

disclosure of personal data, securing

communications with external

stakeholders (such as for instance

external systems).

The security is another important topic in every software development. Focusing on maintaining
the system security, a requirements’ guideline has been defined to be followed during the WP3
works and discussions. These requirements will be included in the software development although
they aren’t explicitly mentioned. Further information can be read in the Security remark section.

Security requirements:
1) Identification and password management

a) User access
i) The users must be authenticated to the Web Dashboard by an eID scheme under the

corresponding eIDAS identity provider implementation;
ii) Any stored key must be stored securely and encrypted;
iii) After authentication, the users will receive an authentication token, e.g. carried as a

cookie (SECURE and HTTPONLY).
b) Administrative access

i) Any administrative access should be requested by secure channel (SSH).

2) Authorization and role management

a) On every module, control of user access rights must be provided.

3) Cryptography and key management

a) The system needs to hold security functions to generate and manage internal private keys
and the corresponding certificates.

4) Network and data security

a) It is necessary to consider the following
i) Web Application Firewall;
ii) Intrusion Detection Services;
iii) VPN and/or TLS;
iv) Whitelist access controls.

b) Inside the DLT network it is appropriate to use a Reverse Proxy to protect incoming DLT
connections.

3. State-of-the-art in Blockchain technology for
eGoverment services

Blockchain is one form of implementation of distrusted ledger technology and combines a series
of cryptographic algorithms like public-key-cryptography (PKC), elliptic-curve (EC) digital
signatures and hashing which together guarantee the following key characteristics:

• Decentralized network: There is no central authority and no central data storage, i.e.
no single point of trust, vulnerability or failure.

• Trustlessness: A blockchain does not require trust in any authority or every participant.
• Consensus-based network: A process allows participants to come to an agreement over

what (e.g. the validity of a transaction) is true or false.
• Transparent and traceable transactions: all transactions in a blockchain are visible

and verifiable to participants with rights.
• Immutable transactions: transactions and blocks added to the blockchain are

technically impossible to manipulate or modify.
• Security: assets in the blockchain are cryptographically secured, and due to its

decentralized nature, there is no single point of failure being Denial of Service resistant
by design.

• Pseudonymous and anonymity: implementations in block chain vary a lot in this
respect, most chains allow implementing pseudonyms for id nodes in the network, but
anonymity levels tend to be low due to traceability in transactions. The validity of all
transactions is available to everyone on the network

Public blockchains are implementations of the distributed ledger where the data inside the
blockchain (transactions) is open to the public and everyone can take part as a node while Private
blockchains also called permissioned[1] blockchains operate inside a previously defined network
of participants.

As it has been mentioned in the D2.2, section 7.1, Quorum[2] is the selected Blockchain base
platform to be used in PoSeID-on, complemented with Smart Contracts and using Constellations.

Due to the key inherent properties of the technology (previously described), Blockchain, one of
the most significant innovations in data gathering and processing to appear in a long time, has

captured the attention of government administrators in the European Union[3]. In fact,
Blockchain has been applied in government services in many ways:

• Securing and sharing important data and records: Verification of the records and
sharing of data of various kinds:

o Identity: In Switzerland, the city of Zug, in 2017 used the first publicly verified
blockchain-based identity credential to residents[4] which they have subsequently
used for e-voting[5] and renting e-bikes[6].

o Title/asset registrations: It has been applied in Africa[7] and India[8], developing
countries looking to fight corruption by local officials who could “steal” land by
altering paper-based records. In Sweden, has been carried out the first successful
test transaction of a fully blockchain-based transfer of title[9]. In the UK, HM Land
Registry is testing blockchain in its bid “to become the world’s leading land registry
for speed, simplicity and an open approach to data”[10].

o Healthcare: In Estonia KSI Blockchain technology is being used to ensure data
integrity and mitigate internal threats to the data[11]. In Sweden, there is an
initiative to develop a national blockchain for health records to give citizens more
control of their data[12].

o Educational certification: The University of Nicosia issues academic certificates that
can be verified online via a blockchain[13]. In Malta, the government is teaming
up with a startup to build a prototype system to do the same[14]. A consortium of
Malaysian universities is building a blockchain-based platform to combat fake
degrees,[15] while a French startup is looking to use a blockchain network for the
issuance and sharing of university and other degrees[16].

o E-Voting: Related blockchain-based e-voting projects are underway in areas as far
flung as West Virginia[17] and Moscow[18]. It is still a controversial topic within
both political and scientific circles. Nevertheless, Blockchain-based e-voting
solutions address almost all the security concerns, like privacy of voters, integrity,
verification and non-repudiation of votes, and transparency of counting[19].

• Monitoring and regulating markets: Government regulates and monitors markets to
protect consumers, make sure markets remain viable and ensure that laws are adhered
to, as one of the key tasks. Singapore carried out a proof of concept related to this point
with several banks[20].

• Improving transactions, processes and transparency in public and private-
sector markets: The ways in which governments transact and interact with citizens and
companies directly, particularly in complex settings with multiple stakeholders and high
transaction volumes, using Blockchain for improving.

• Efficiency: Blockchain can help increase efficiency and reduce costs in government
operations.

• From dreams to reality: Blockchain can increase efficiencies, reduce costs and improve
security along the way.

The world is witnessing rapid adoption of Blockchain technology. Some numbers collected until
2018 are the following[21]:

• $1.1 Billion Invested by private sector in 2016 alone.
• 600 New companies active in Blockchain in 2018
• $290 Billion value expected market value in 2019
• Leading governments along the world exploring Blockchain Technology (Table 2):

Table 2 - BC Technology applied in some regions

REGION BLOCKCHAIN TECHNOLOGY APPLIED

UNITED STATES (DE) Company incorporation records stored on Blockchain (Delaware)

SINGAPORE Invoicing on Blockchain

ESTONIA E-Citizen records, e-payment keys and medical records secured on
Blockchain

SWEDEN Real-estate transactions on Blockchain

UK Blockchain used to monitor the distribution of grants

GHANA Land registry in Blockchain

CHINA[22] Chancheng government applies blockchain technology to solve
problems of identity, credit and information disclosure

In many regions are aligned with the advantages that Blockchain technology offers[23] to the
public sector, not just to governments but also to the citizens. So that, it can be seen that it is
important to find a solution in the way of how to use Blockchain technology following the
recommendations of the GDPR (PoSeID-on solution detailed in Section 4).

4. Architecture and Detailed Design

It is going to be detailed both, the architecture and the design, as a detailed explanation along
this section.

 Architecture Overview

The low-level design carried out by this work package will be split in two steps. The first one will
propose an initial solution of the Blockchain system and the Blockchain API that will open services
and decentralized permission management to other modules. The second step will make an
evaluation and redesign of the developed components.

This deliverable will formalize the works done to obtain the first version of the Blockchain system
and the API Gateway. The second step is out of the scope of this deliverable and it will be achieved
at the Deliverable 3.2 “PoSeID-on blockchain - Final Implementation”.

The access to the data is restricted to outsiders, but also to insiders without permissions. The
data subject can also hide their PII (Personal Identifiable Information) trace, performing the right
to erasure (established in the GDPR, art. 17[24]) as the only actor fit to recover their uniquely
owned keyset. The Smart Contracts rule the permissions enabling them to be made low level and
granular. This fact, joint to the Account Manager module, ensures the privacy and lack of linkage
for everyone once they deleted their account, that represents the last footprint.

The Blockchain system components and developments have been formulated in a way that each
component is modular, reusable and easily modifiable without affecting other components in the
system. This development philosophy allows to pivot from one solution to another in an agile
way, according to the needs of the project.

Each separate component of the Blockchain Module represents a functionality entry point for the
system, that has to be connected to another one in order to provide the platform with full
functionality.

The created architecture is based on the works performed during the WP2 analysis and design.
But that architecture has been modelled, fitted and focused on the solution, which translates into
the modular scheme shown in Figure 1.

Figure 1 shows the main modules of the system in a comprehensive manner. Each block acts
independently in development environments, and it can be tested as it is.

Figure 1 - Main modules of the PoSeID-on system

Figure 2 explodes each block in a technical overview of the system. It shows that the Blockchain
part is closely connected to the Data Processor systems, but it has interactions with other actors
in the system. For example, the key management is a key feature of the system to identify Data
Subjects and Data Processors. Since both type of users’ needs to interact with the Blockchain,
the key management is also a key feature for Blockchain, and a key section inside this document.

The block connection arrows shall indicate the connections to be performed during the integration
phase.

Figure 2 - Detail of the modules - Technical overview of the system

 Design

The PoSeID-on distributed ledger will be shared between a selected group of participants. The
common point is that every participant needs to provide services for their users (the Data
Subjects). Each organization will own its own peer. But from a technical, high level overview
everything related to Blockchain is limited to two main components:

• Blockchain Communication Module as Blockchain API
• Distributed ledger nodes

These two main components will be later exploded and detailed in this design section. The section
will be targeted from a technical, implementation and deployment focused, component-based
point of view, as it is founded in the previous design deliverable D2.2, where the Blockchain
module design was broadly studied and worked.

The Blockchain-related architecture first design has been adapted to better fit the PoSeID-on
overall deployment needs. Its final state has the components shown in Figure 3 (they will be
described in the following sections):

Figure 3 - Final components in the Blockchain architecture first design

4.2.1. Cloud-based Permissioned Blockchain

The Blockchain Network is considered a key component inside PoSeID-on because the
continuously growing list of records that will be stored in an immutable way will keep the solution
to allow the platform users to manage their permissions. The records kept by the nodes of this
network are the output from the transactions to be linked inside the Blockchain blocks. In this
solution, the data quality is maintained by massive database replication and computational trust
instead of keeping single data copies produced by separate program executions that make the
origin to be trusted.

The rest of the PoSeID-on platform involved components have been designed considering the
decentralized and distributed character of the ledger created by this component. This decision is
the driver of presenting a decentralized system governed under consensus that is reached by all
participants of PoSeID-on in a democratic manner. No entity has greater control over the others
and all entities are at par. It gives this solution the desired trust degree for an innovative research
project.

The PoSeID-on blockchain network is designed as a permissioned network with private access
ledger in which only duly authorized members can interact with each other. A permissioned
blockchain is a specific blockchain type that has been adopted for the following reasons:

• Privacy – Only actors with view rights for specific transaction payloads can access to a
specific piece of data. A permissionless blockchain would have been ideal as a shared
database if everyone could read everything but being the BC permissionless no single user
controls who can perform write operations. In the PoSeID-on use case scenarios, the
transactions are not visible to anyone that is not authorized.

• Scalability – It is possible to adopt a specific consensus model. This prevents other
permissionless oriented mechanisms, like Proof of Work, from burning a heavy amount of
computational cycles. The ultimate result is scalability compared to a public blockchain
network.

• Traceability – The selected type of blockchain allows to have a certainty over the current
set of user permissions. These have been recorded by their interactions with PoSeID-on
when they manage their own personal data. This capacity allows transparency in all the
entities involved in the personal data access until the user decides to perform the so
known “right of erasure”.

• Immutability – The adoption of a permissioned blockchain enables trust on data
controllers/processors involved in the system. This is a well desired capacity because the
data subject needs to be provided with functionality from them, but also needs a
(sometimes disappeared) feel of protection.

• Access Control – The access to the data is restricted to outsiders, but also to insiders
without permissions. The data subject can also hide their PII trace, performing the right
to erasure (established in the GDPR, art. 17) as the only actor fit to recover their uniquely
owned keyset. The Smart Contracts rule the permissions enabling them to be made low
level and granular. This fact, joint to the Account Manager module, ensures the privacy
and lack of linkage for everyone once they deleted their account, that represents the last
footprint.

In this solution, all the Data Processors involved will record the PII Permissions they handle in
their different business processes and services. This information will be used to provide services
for the Data Subjects. The record of PII will be specially designed to comply with:

• The GDPR regulations, in force in the member countries of the European Union.
• The data protection regulations and specific implementations associated with the countries

of the participating companies.

Blockchain network components
The explanation about how the PoSeID-on platform’s distributed network has been deployed,
based on the design proposed in the general architecture deliverable D2.2, is as follows (its
different components will be enumerated).
The Blockchain network deployment, as any other distributed system may need, requires an
ordered group of steps to successfully execute the process. For PoSeID-on, the deployment steps
to be followed are defined below:

1. Define the number of initial nodes to deploy: According to previous agreements,
each Data Processor (DP) will own and manage its own node, so for PoSeID-on first
production release, this means that will have 4 nodes.

2. Provision the hardware and virtual machines necessary for the deployment of
the services. No matter what vendor or provided is behind the service, all participants
of PoSeID-on Blockchain need to have at least a fully working instance in order to deploy
the Quorum Ledger node.

3. Configure the node with a Digital Identity and boot-time parameters. Nodes will
require to share the genesis block configuration, usually encoded and shared as
genesis.json file between ledger partners and parties. This genesis.json will have all
required configuration details in order to deploy new nodes on the ledger. Apart from this,
there are other several parameters that needs to be agreed upon boot and shared
between partners. Such details are:

a) Ledger Network ID
b) List of IDs from allowed nodes (also known as list of permissioned nodes)
c) Gas value
d) Gas Price value

The selected blockchain to be applied to PoSeID-on, as it has been mentioned before, is Quorum
as a permissioned chain. Quorum has the following components (shown in Figure 4):[25]

• Quorum Node (modified Geth Client): It is intentionally designed to be a lightweight fork
of geth in order that it can continue to take advantage of the R&D that is taking place
within the ever growing Ethereum community. To that end, Quorum will be updated in-
line with future geth releases.

• Constellation: As it was mentioned in D2.2, it is a general-purpose system for submitting
information in a secure way. It is comparable to a network of MTA (Message Transfer
Agents) where messages are encrypted with PGP. It is not blockchain-specific and is
potentially applicable in many other types of applications where you want individually-
sealed message exchange within a network of counterparties. The Constellation module
consists of two sub-modules:

o Constellation/Tessera - Transaction Manager: “Quorum’s Transaction Manager is
responsible for Transaction privacy. It stores and allows access to encrypted
transaction data, exchanges encrypted payloads with other participant's
Transaction Managers but does not have access to any sensitive private keys. It
utilizes the Enclave for cryptographic functionality (although the Enclave can
optionally be hosted by the Transaction Manager itself.) The Transaction Manager
is restful/stateless and can be load balanced easily”.

o Constellation/Tessera - Enclave: “Distributed Ledger protocols typically leverage
cryptographic techniques for transaction authenticity, participant authentication,
and historical data preservation (i.e. through a chain of cryptographically hashed
data.). In order to achieve a separation of concerns, as well as to provide
performance improvements through parallelization of certain crypto-operations,
much of the cryptographic work including symmetric key generation and data
encryption/decryption is delegated to the Enclave. The Enclave works hand in hand
with the Transaction Manager to strengthen privacy by managing the
encryption/decryption in an isolated way. It holds private keys and is essentially a
“virtual HSM” isolated from other components.”

Figure 4 - Quorum Logical Architecture Diagram

• Ledger and state DBs: Only one distributed ledger is shared and replicated in each
Quorum Node of each Blockchain Module of each Data Processor. The public state DB is
also replicated in every Quorum Node.

• Account manager: External user accounts in Ethereum-based blockchain network are
basically composed of an address and its state.

• Clients: The Client represents the entity that acts on behalf of an end-user (Data Subject
in case of PoSeID-on).

• Smart contracts: Smart Contracts capabilities will be implemented by building as many
contracts as needed for the target use cases in PoSeID-on.

In order to manage Quorum API, it has two methods already defined, as well as two calls.
On the one hand, Quorum API has the following methods: [26]

• eth.sendTransaction: To support private transactions in Quorum.
• eth.sendRawPrivateTransaction: To support sending raw transactions in Quorum.

On the other hand, in addition to the JSON-RPC provided by Ethereum, Quorum exposes two API
calls:

• eth_storageRoot: Returns the storage root of given address (Contract/Account etc).
• eth_getQuorumPayload: Returns the unencrypted payload from Tessera/constellation.
• eth_sendTransactionAsync: Sends a transaction to the network asynchronously.

4.2.2. Account Manager

The account manager oversees the PoSeID-on platform user identities. This means that the
purpose of this module is to ensure linkage between user known accounts and anonymous
Blockchain accounts. The connection is dependent on how PoSeID-on user accounts are managed
and how they can interact with an external module, as it is the Blockchain platform.

To achieve that goal, the management of user Blockchain accounts (identities) is a key point.
Within this project, the Burnable Pseudo-Identities Solution has been designed.

4.2.2.1. The importance of GDPR Art. 17 for the Account Manager module

As explained in previous sections, the platform allows the Data Subjects to stop using PoSeID-
on, and thus, activate the right to be forgotten (right of erasure as established in the GDPR, art.
17). When this action takes place, Data Processors must “forget” any data related to that specific
user. As Blockchain keeps an immutable, traceable, forever growing record of the actions taken
place in the network a special effort has been made to achieve this need.

From a technical point of view, the team has done research to find the best way to unlink data
from the system without breaking the block record and without rejecting the Blockchain original
philosophy, that would have ended in a misuse of the technology.

The solution has embraced the fact that if the system can’t access the data and if it could be
possible, the atomic accessible data has no sense, the data is useless. For example, if a Data
Processor could view an address, but it can’t be linked to a person or an account, no Data Subject
data can be inferred. In other words, the dissociation between the single data and the data subject
leads to an anonymization of the data itself. To achieve that goal, the management of user
Blockchain accounts is a key point.

4.2.2.2. The Burnable Pseudo-Identities Solution Design

External user accounts in Ethereum-based blockchain networks are basically composed of an
address and its state. The address has 20 bytes. Any person signing a request with a private key
associated to a public one whose hash ends with the 20 bytes that match an address can act in
the name of the corresponding account.

Focusing on the development, each write request that arrives to the ledger is composed by a
unique address and the requested data. Since the Identity Data (external account address) is
stored in the ledger in every user interaction (e.g. change a permission status in the PoSeID-on
system) it is not possible to use a single user ID, identity or any kind of eIDAS (electronic
Identification, Authentication and trust Services) information, because it would result on breaking
the GDPR compliance because the PII about that user would be traceable. The aim of the
proposed solution is to allow user interactions in a way that can be:

▪ Traceable over the time while the user is using PoSeID-on services.
▪ Compliant with GDPR and `right to be forgotten` when the user requests it.

As only known Data Processors will be the parties maintaining Blockchain nodes and the Data
Subjects will be previously authenticated on the Web Dashboard by PoSeID-on with a legit identity
(view eID Provider Module from the architecture), the access control strategy is to operate
account permissions privately by each Data Processor. The account management will act as later

explained at section ¡Error! No se encuentra el origen de la referencia. (Identity
Management), where the eID Provider is meant to facilitate user information to manage its
account after a correct identification.

This section will explain how the connection between the Data Subjects or Data Processors and
their Blockchain identities has been implemented based on the design proposed.

4.2.2.3. The Burnable Pseudo-Identities Solution Implementation

In short, the Burnable Pseudo-Identities Solution is a mechanism to create a pool of pseudo-
identities for each Data Subject user that can be erased by request. When the pseudo-identities
are deleted by the Data Subject, the link between two given permissions does not exist; a
permission history over the time can’t be created; the Data Controller owning the data stored on
the ledger is not known; and the Data Subject addresses are forgotten by PoSeID-on.

The proposed flow was described at D2.2 as shown in Figure 5.

 Figure 5 - Flow throw the Burnable Pseudo-Identities Solution Implementation

Given the PoSeID-on requirements, the ledger operational identities must not be persisted as
immutable data over the time. Since the current available distributed ledger solutions don’t work
on this premise, an alternative for this issue needs to be proposed.

The alternative solution given by PoSeID-on project is to generate a set of pseudo identities for
each user so that their legit (eIDAS based) identity remains secret for everyone and all ledger
operations are made using those burnable pseudo identities.

Since the PoSeID-on platform needs to be GDPR compliant, it needs to operate upon user identity
without revealing the user identity. This problem derives from following fact:
“All private and public Blockchain frameworks, store client identity along transaction data”

In the base code implementation selected for the project, Quorum, each data write request that
arrives to the ledger is composed by a unique user id and request data as shown in Figure 6
below:

Figure 6 - Request ID & Request Payload

Mnemonic generation

Mnemonic phrases, also known as ‘seed words’ or ‘recovery phrases’, are ordered lists of 12 - 24
words which bring you to specific wallet addresses. These are typically used for recovery, and
they are not meant to be used as the main method of access for anyone’s wallet. These phrases
offer direct access to one’s wallet, so they should be treated carefully. Mnemonic phrases are just
as sensitive as your private key, in terms of privacy. With your phrase, anyone can permanently
access your wallet. These phrases cannot be changed, so keeping them safe is crucial.

A mnemonic example would be:

beyond enact slight piano fox way sight process side ritual inhale world

fiction mansion pattern

Which is automatically mapped to BIP39 seed like:

2f5b299827afc15d9129e18def7e3a59104ad86b0b73ef803c2aaa905661f44f4ac65b

e268b3676aed15b25c79dd2d0934216c98f48367fc83484f7347263ed4

This is the default mechanism of PoSeID-on that will be used for account recovery.
At implementation stage, account mnemonic generation was done using a secure library called
bip39[27] which allow us to provide safe and stable mnemonic generation for all PoSeID-on
partners and end users.

The BIP 39 standard

As shown by the official standard description created by Marek Palatinus, Pavol Rusnak, Aaron
Voisine and Sean Bowe, BIP39 is the implementation of a mnemonic code or mnemonic sentence
-- a group of easy to remember words -- for the generation of deterministic wallets. It consists
of two parts: generating the mnemonic and converting it into a binary seed. This seed can be
later used to generate deterministic wallets using BIP-0032 or similar methods.

The motivation behind this standard, is the lack of a mechanism to remember a raw binary string
or hexadecimal number. In the case of quorum, this raw string represents the seed of a wallet.
Thanks to BIP39, this raw string can be converted to a sentence that could be written on paper
or spoken over the telephone.

The mnemonic must encode entropy in a multiple of 32 bits. With more entropy security is
improved but the sentence length increases. We refer to the initial entropy length as ENT. The
allowed size of ENT is 128-256 bits.

From mnemonic to seed

As it is explained in Official Bitcoin Improvement Proposals 39[28]: “A user may decide to protect
their mnemonic with a passphrase. If a passphrase is not present, an empty string "" is used
instead. To create a binary seed from the mnemonic, we use the PBKDF2 function with a
mnemonic sentence (in UTF-8 NFKD) used as the password and the string "mnemonic" +
passphrase (again in UTF-8 NFKD) used as the salt. The iteration count is set to 2048 and HMAC-
SHA512 is used as the pseudo-random function. The length of the derived key is 512 bits (= 64
bytes).

This seed can be later used to generate deterministic wallets using BIP-0032 or similar methods.
The conversion of the mnemonic sentence to a binary seed is completely independent from
generating the sentence. This results in rather simple code; there are no constraints on sentence
structure and clients are free to implement their own wordlists or even whole sentence
generators, allowing for flexibility in wordlists for typo detection or other purposes.

Although using a mnemonic not generated by the algorithm described in "Generating the
mnemonic" section is possible, this is not advised, and software must compute a checksum for
the mnemonic sentence using a wordlist and issue a warning if it is invalid. The described method
also provides plausible deniability, because every passphrase generates a valid seed (and thus a
deterministic wallet) but only the correct one will make the desired wallet available.”.

4.2.2.4. Account generation

Cryptographic information is the most sensitive part of any system in which cryptography is
considered one of the fundamental pillars. That is why in Blockchain systems it is necessary to
pay special attention to this part, in order to avoid unwanted behaviours and possible security
breaches.

For this reason, PoSeID-on has a user account management system in which, managed by the
BC API, can provide PoSeID-on users, transparently, secure and reliable access to the Blockchain
functionality without disclosing the content of them. Maintaining the security of private keys and
their custody, on server side an avoiding communicating them over Internet, PoSeID-on ensures
the integrity of the platform, hence, the generation of accounts is delegated to BC API.

The Blockchain API will create new Blockchain accounts upon external request by Data Subjects
and Data Processors as it is shown in Figure 7.

Figure 7 - Account generation simplified flow diagram

4.2.2.5. Account recovery

Since PoSeID-on was designed with a usability criterion in mind, it is required to have some sort
of mechanism to allow users to get their accounts back when they forgot the password. However,
since PoSeID-on authentication is done against EIDAS, PoSeID-on platform has nothing to do
against this service rather than relying on its own EIDAS mechanism. However, from Blockchain
point of view, PoSeID-on has included an account recovery mechanism for disaster recovery
situation that will help to:

• Recover user account access when blockchain access, or the API is compromised.
• Recover user account access when users lose his/her access keys.

Account recovery flow
Currently, the account recovery assumes that PoSeID-on users can access to the platform using
PoSeID-on dashboard (shown in Figure 8). The account recovery mechanism only covers the
account managed by the blockchain itself and no other components, therefore there is no a
PoSeID-on generic recovery mechanism. This is caused, indeed, by the fact that PoSeID-on
Dashboard log-in system is based on eIDAS, and PoSeID-on rely on eIDAS for all account related
procedures such as identification, etc.

Figure 8 - Account recovery flow diagram.

Given the complexity and need for cryptographic material to execute transactions against the
ledger, there are several considerations to make prior any interaction. The ledger transaction flow
needs to be followed according to following steps, which is the common way of executing private
transaction in Quorum Blockchain.

Figure 9 - Steps to be followed from the ledger transaction flow according to official documentation [29] guidelines.

In the previous example (Figure 9), Party A and Party B (considering them different Data
Processors) are the ones involved in transactioning. Thus, for illustration purposes we will call it
Transaction AB, leaving Party C (Data Processor C in the PoSeID-on ecosystem) out of the scope
of the transaction even though belong to same Blockchain network.
1. Party A sends a Transaction to their Quorum Node, specifying the Transaction payload and

setting privateFor to be the public keys for Parties A and B.
2. Party A's Quorum Node passes the Transaction on to its paired Transaction Manager,

requesting for it to store the Transaction payload.
3. Party A's Transaction Manager makes a call to its associated Enclave to validate the sender

and encrypt the payload.
4. Party A's Enclave checks the private key for Party A and, once validated, performs the

Transaction conversion. This entails:

a) generating a symmetric key and a random Nonce
b) encrypting the Transaction payload and Nonce with the symmetric key from a).
c) calculating the SHA3-512 hash of the encrypted payload from b).
d) iterating through the list of Transaction recipients, in this case Parties A and B, and

encrypting the symmetric key from a). with the recipient's public key (PGP encryption)
e) returning the encrypted payload from step b)., the hash from step c). and the encrypted

keys (for each recipient) from step d). to the Transaction Manager
5. Party A's Transaction manager then stores the encrypted payload (encrypted with the

symmetric key) and encrypted symmetric key using the hash as the index, and then securely
transfers (via HTTPS) the hash, encrypted payload, and encrypted symmetric key that has
been encrypted with Party B's public key to Party B's Transaction Manager. Party B's
Transaction Manager responds with an Ack/Nack response. Note that if Party A does not
receive a response/receives a Nack from Party B then the Transaction will not be propagated
to the network. It is a prerequisite for the recipients to store the communicated payload.

6. Once the data transmission to Party B's Transaction Manager has been successful, Party A's
Transaction Manager returns the hash to the Quorum Node which then replaces the
Transaction's original payload with that hash and changes the transaction's V value to 37 or
38, which will indicate to other nodes that this hash represents a private transaction with an
associated encrypted payload as opposed to a public transaction with nonsensical bytecode.

7. The Transaction is then propagated to the rest of the network using the standard Ethereum
P2P Protocol.

8. A block containing Transaction AB is created and distributed to each Party on the network.
9. In processing the block, all Parties will attempt to process the Transaction. Each Quorum node

will recognise a V value of 37 or 38, identifying the Transaction as one whose payload requires
decrypting, and make a call to their local Transaction Manager to determine if they hold the
Transaction (using the hash as the index to look up).

10. Since Party C does not hold the Transaction, it will receive a NotARecipient message and will
skip the Transaction - it will not update its Private StateDB. Party A and B will look up the
hash in their local Transaction Managers and identify that they do hold the Transaction. Each
will then make a call to its Enclave, passing in the Encrypted Payload, Encrypted symmetric
key and Signature.

11. The Enclave validates the signature and then decrypts the symmetric key using the Party's
private key that is held in The Enclave, decrypts the Transaction Payload using the now-
revealed symmetric key and returns the decrypted payload to the Transaction Manager.

12. The Transaction Managers for Parties A and B then send the decrypted payload to the EVM
for contract code execution. This execution will update the state in the Quorum Node's
Private StateDB only.

NOTE: once the code has been executed it is discarded so is never available for reading without
going through the above process.

4.2.3. Smart Contract Basics

Smart Contracts are independent from the context where they are being executed. Those Smart
Contracts can be deployed both for development or pilot stages indistinctly.

A Smart Contract is a computer program that act as agreement, with the main goal to enable two
parties to trade and do business with each other over the internet, without the need for a
middleman (i.e. a centralized source of trust).Smart Data technical infrastructure can use
blockchain technology because the distributed ledger system can be used to confirm whether
contractual conditions have been met. In the framework of this project, the Smart Contracts
technology will be leveraged to allow data subjects rest well about the way his own PII are
managed. Smart Contracts are independent from the context where they are being executed.
Those Smart Contracts can be deployed both for development or pilot stages indistinctly. The
correct coding of each contract permits it to behave in predefined ways, then it is encrypted and
sent out via distributed ledgers to other parties of this network. The major common components
of the Smart Contracts are (as the have been described in the proposal of this project): Schema,
Logic, Counterparties, External Sources, Ledger, Contract Binding.
The PoSeID-on Platform privacy aware design allow different parties to get the right data at the
right time preserving their users’ privacy. The goal to achieve this was in fact, because of the
internal permission management design which is backed by the blockchain smart contracts. These
smart contracts are the key for a proper permission management, check and lookup so every
sensitive operation is made within them.

The list of the permission related Smart Contracts supported operations has led the development
phase. It is shown below these lines:

Request PII Permission
Request: The content of the request contains the requested data type from an optional pre-
defined list. Otherwise, the permission data type will be set as lowercase raw string (i.e. bank
account, phone, email, address, blood type, etc.) identifying the type of permission requested.
The Permission request will also contain the time when that permission will stop having effect
and a field with the description of the finality of the data.
Response: The request returns an OK/NOK for the storage of the request, since the permission
will be pending until the Data Subject grants it. At this point, permission will be set to REQUESTED
status

Grant PII Permission
Request: The content of the request contains the data type to grant (i.e. phone number), the DP
(Data Processor) allowed to request the data and the PII owner of granted data. In those
situations where a time interval is required, timing and expiration information will be sent too. If
timestamp information is needed for grant request, this information will be sent along other
required parameters.
Response: The request returns an OK/NOK status codes as minimal response for those clients
that use this call. NOK status will be trigger in situations such as no existent data type grant
attempts, no existent DP attempt, etc. OK will be returned when DP grant request is successfully
completed allowing DP to use/read requested data type.

Revoke PII Permission
Request: The content of the request contains the data type to revoke (i.e. phone number), the
DP to be revoked from allowed DP members, and the PII owner of revocation data.
Response: The request returns an OK/NOK status codes as minimal response for those clients
that use this call. NOK status will be trigger in situations such as, already revoked permission

attempts, no existent data type revocation attempts, etc. OK will be returned when DP revocation
request is successfully completed.

PII Access Notification
Request: The content of the request contains the data type name (i.e. phone number) accessed
by DP, the DP that accessed to that information and timestamp information to record on the
ledger.
Response: The request returns an OK/NOK status codes as minimal response for those clients
that use this call. NOK status will be trigger when no data type exists for given DP, no existent
DP, etc. OK will be returned when DP saves access record successfully.

Check PII Permission
Request: The content of the request contains the data type to check (i.e. phone number) in
requested Data Subject.
Response: The request returns an OK/NOK status codes as minimal response for those clients
that use this call. NOK status will be trigger when no access to requested data field is given, no
existent data check attempts, etc. OK will be returned when DP has permission to use/read
requested user PII.

PII Access Notification
Request: The content of the request contains the data type name (i.e. phone number) accessed
by DP, the DP that accessed to that information and timestamp information to record on the
ledger.
Response: The request returns an OK/NOK status codes as minimal response for those clients
that use this call. NOK status will be trigger when no data type exists for given DP, no existent
DP, etc. OK will be returned when DP saves access record successfully.

List PII Permission stored
Request: The content of the request contains the Data Subject information data for permission
enumeration (GPDR compliance information only)
Response: The request returns Data or a NOK status codes as minimal response for those clients
that use this call. NOK will be trigger when no Data Subject information is recorded, etc. DS
stored PII permission list will be returned otherwise.

4.2.4. Blockchain Client Flows

The clients (Data Subjects in PoSeID-on) are the ones that can only access to the Blockchain
network throw a Quorum Node. These clients are responsible for composing the transactions and
signing the messages, providing the needed privacy mechanisms between actors. PoSeID-on
considers three different types of actors: Data subjects, Data Processors, Administrators.
In the following diagram, Figure 10, it will be described how those clients are designed and their
particularities managing specific PoSeID-on users (for further details in D2.2 deeply explained).

Figure 10 - PoSeID-on General Architecture

The PoSeID-on permissioned blockchain consists of a special-purpose built blockchain
implementation that only works within the PoSeID-on system. It will be permissioned, meaning
that instead of a proof-of-work or proof-of-stake consensus, a central authority will provide the
permission to participate in the PoSeID-on Blockchain network. This will cause faster transaction
speeds and will protect the implementation from the risks public blockchains are facing. The
functionality of the system will be ridden by Smart Contracts stored within this blockchain, and
they will describe the management of the requests and permissions to grant, deny and check PII
access. The blockchain nodes are expected to be hosted by the PoSeID-on administration entity
and the participating data processors. It is also possible to allow the inclusion of nodes hosted by
other entities – which might make sense in some scenarios.

The blockchain API abstracts all Blockchain operations into a high-level API suitable for integration
into other applications. Since the use of Blockchain carries some important implications on how

the clients and the servers behave, actions like account management (Data Processor and Data
Subject identity on the Blockchain) or system functionality (Smart Contract functions usage)
change drastically. For instance, users shall sign locally every call to a Smart Contract, but other
components in the overall PoSeID-on architecture, like the Web Dashboard Module will function
normally despite the existence of a Blockchain network behind it. Modules writing information to
the Blockchain ledger must have a mechanism to access the network and work against it. This
nexus will be the Blockchain API, that will also allow the intervening modules to feed the Risk
Management and Data Process Analytics Module.

The Blockchain API is not a web-service, but it will be directly used as a wrapper from the client
browser, without intermediaries, providing a direct connection to the Blockchain Module. This API
will only be accessible once the user has been authenticated by the eID Provider Module
(implementing eIDAS).

Since PII permissions and transactions are both a form of PII as well, there is a need of protecting
their confidentiality and integrity. Therefore, a Blockchain platform implementation that allows
private communications between parties is necessary. To this aim, PoSeID-on solution will rely
on a permissioned Blockchain implementation. This means that, in a permissioned way, each
deployed peer will belong to a well-known party, and that party can only participate in the
consensus of data validation for the operations that are privately shared to it. This will separate
ledger (data) access permission not only virtually, but also physically. This mechanism raises the
security of private information.

In PoSeID-on, since every Web Dashboard and Data Processor components (and their related
API components) belong to a well-known party, it is possible to find a scheme of Blockchain
participants. Each of these participants will be aware of a certain set of Data Subject’s PII
permissions, and then will be able to check their states.

Private contracts and transactions refer to a set of parties. A party can be understood as an
organization and its related infrastructure (basically a Quorum node and a Constellation in charge
of the process of the private transaction). By restricting the user accounts that can access the
party (that is, by defining and guarding an organization), the privacy is transferred to final users.

Organizations participating in the PoSeID-on Blockchain permissioned network are conceptual
entities who have permission to maintain pieces of information and interact with other
organizations through the distributed ledger.

These organizations are responsible for maintaining their Quorum Party infrastructure which
executes the Smart Contracts, maintains the block chain and updates the public and private
states.

Quorum manages the privacy of transactions between parties, but the association between
parties and user accounts is out of the scope of Quorum itself. Thus, in order to support the
concept of organization as referred to a group of authorized participants, a module that associates
user accounts to organizations and manages the access of the account to the Quorum party is
needed. This module is named Account (Access Control) Manager in the architecture.

In Quorum, permissions can be managed at the individual node level by the “--permissioned”
command line flag when starting the node. “If the “—permissioned” flag is set, the node looks
for a file named <data-dir>/permissioned-nodes.json. This file contains the whitelist of enodes

that this node can connect to and accept connections from. Therefore, with permissioning
enabled, only the nodes that are listed in the permissioned-nodes.json file become part of the
network. If the “—permissioned” flag is specified but no nodes are added to the permissioned-
nodes.json file then this node can neither connect to any node nor accept any incoming
connections.”.[30]

A technical list of interaction flows from and to the BC API is specified by diagrams according to
the requirements gathered on the WP2 (summarized in “PoSeID-
on_System_requirements_v6.xlsx”)

4.2.4.1. Blockchain API authentication[31]

For authentication, each allowed participant will have each own key-secret data. For authorization
however, each call made through Blockchain API will have a token/secret that will grant or access
caller to respective endpoints (Figure 11).

Figure 11 - BC API authentication diagram

Authentication can be made via HTTP headers or query parameters, as shown in following
example[32] (added for clarification):

https://domain.tld/path?id=20a5abac-3519-4b9f-8800-
cc8f0808b2b3&secret=aB7nV3nE7uI2nP6oW2fC2bH0uX0rB4dH0nL1vU0hY5sV4iA42A

4.2.4.2. New Data subject registration

This diagram shows how the Web Dashboard or the Data Processor API will register a new
'Blockchain Data Subject' via the BC API (Figure 12). This process involves the creation of a key
pair and recovery seed.

Figure 12 - New Data Subject registration diagram

Note: If a user loses the device, he or she can recover its account providing the content of
'recovery_mnemonic' which is a set of random words like:

void come effort suffer camp survey warrior heavy shoot primary clutch crush
open amazing screen patrol group space point ten exist slush involve unfold

Note about the key creation: Web Browsers does not have a 'cryptographically' secure entropy
source, so we cannot leverage on them account generation process, unless, web dashboard
implements some 'entropy generation mechanism' such as capturing user mouse movements
from a period of time, then converting to a byte array and after that, generating the proper seed
and all related cryptographic material.

4.2.4.3. Data subject account recovery/regeneration

This diagram in Figure 13 shows how the Web Dashboard, or the Data Processor API will start
the recovery process for previously registered user via Blockchain API.

Figure 13 - Data Subject account recovery/regeneration diagram

When having a successful result, the expected situation would be same as registering new user,
but instead, no new seeds nor accounts are generated.

4.2.4.4. List access permissions granted by Data Subject

This diagram (Figure 14) shows how the Web Dashboard should interact with Blockchain API.

Figure 14 - Access permissions granted by Data Subject diagram

Notice that for a successful information retrieval, the Web Dashboard must provide
REFERENCE/TOKEN/ID/UUID/ADDRESS or a similar identification to the Data Subject to be able
to find the Data Subject information later. For security reasons complying the GDPR, Data
Processor API nor Blockchain API have currently any mechanism to know which Data Subject is
being called, unless it is present in the request body itself.

4.2.4.5. Grant access permissions to Data Processor

This diagram (Figure 15) shows how the Data Processor should interact with Blockchain API to
grant access permissions.

Figure 15 - Grant access permissions to Data Processor diagram

Notice that for a successful information retrieval, the Web Dashboard must provide
REFERENCE/TOKEN/ID/UUID/ADDRESS or a similar identification to the Data Subject to be able
to find the Data Subject information later. For security reasons complying the GDPR, Data
Processor API nor Blockchain API have currently any mechanism to know which Data Subject is
being called, unless it is present in the request body itself.

4.2.4.6. Revoke access permissions to Data Processor

This diagram (Figure 16) shows how the Data Processor should interact with Blockchain API to
revoke access permissions.

Figure 16 - Revoke access permissions to Data Processor diagram

Notice that for a successful information retrieval, the Web Dashboard must provide
REFERENCE/TOKEN/ID/UUID/ADDRESS or a similar identification to the Data Subject to be able
to find the Data Subject information later. For security reasons complying the GDPR, Data
Processor API nor Blockchain API have currently any mechanism to know which Data Subject is
being called, unless it is present in the request body itself.

4.2.4.7. Request access permissions to Data Processor

This diagram (Figure 17) shows how the Data Processor should interact with Blockchain API to
request access permissions.

Figure 17 - Request access permissions to Data Processor diagram

Notice that for a successful information retrieval, the Web Dashboard must provide
REFERENCE/TOKEN/ID/UUID/ADDRESS or a similar identification to the Data Subject to be able
to find the Data Subject information later. For security reasons complying the GDPR, Data
Processor API nor Blockchain API have currently any mechanism to know which Data Subject is
being called, unless it is present in the request body itself.

4.2.4.8. Batch permissions interaction to Data Processor

This diagram (Figure 18) shows how the Data Processor or Web Dashboard should interact with
Blockchain API to execute batch permissions related operations.

Figure 18 - Batch permissions interaction to Data Processor diagram

Notice that for a successful information retrieval, the Web Dashboard, or the Data Processor API
must provide REFERENCE/TOKEN/ID/UUID/ADDRESS or a similar identification to the Data
Subject to be able to find the Data Subject information later. For security reasons complying the
GDPR, Data Processor API nor Blockchain API have currently any mechanism to know which Data
Subject is being called, unless it is present in the request body itself.

4.2.5. Data Processor API

The Data Processor API is the API responsible for communication between the PoSeID-on
platform’s components and external organisations. In PoSeID-on case, these are always Data
Processors; entities enlisted to process, among other things, personally identifiable data.

The data processor API follows a very modular design (see Figure 19). It splits up the API into
two components; an API server and an API client. This approach has a number of benefits. Since

the data processor API harbours a fairly large amount of complicated business logic, it hampers
the onboarding of new organisations onto the PoSeID-on platform. By supplying both the API
server and the API client, this onboarding process is made less obtrusive. Supplying the entire
API client also allows the project to push more sensitive data processing into the data processor’s
security domain. Since all communication is, by design, end-to-end encrypted, the API client is
responsible for one end of the encryption. The other end can be any other PoSeID-on subsystem.

To simplify the design of both the API client and the API server, the design of both will follow an
event- and message-based approach. This means that any number of both API server and API
client instances can run for any associated Data Processor to support the message handling
capacity needed.

To even further simplify the design of the data processor API, each associated data processor
gets its own endpoint and, by extension, its own (set of) API servers.

Communication between the Data Processor API server and API client must happen over a
mutually authenticated, encrypted connection. From a security point of view, based on the
security-in-depth philosophy, this is a hard requirement. Even though the messages between
components and the data processors are end-to-end encrypted, the transport of those messages
needs to be authenticated to prevent any message spoofing attacks. Mutually authenticated TLS
(mTLS) is the most obvious, widely adopted, solution for transport security.

On top of the mTLS connection, the messages can be passed bi-directionally. Messages for the
message bus are not the only messages that are sent over this connection. The API client also
needs access to the functionality exposed by the blockchain API. The blockchain API access is
needed to give the data processor API client the means to verify whether access to certain PII
should be granted before sending it over to the requesting party through the data processor API
server. To encapsulate two very different protocols in one transport, some
encapsulation/multiplexing is needed. Since there is a working mTLS connection available, a
simple solution using WebSockets is all that is needed.

The data processor API server, with these restrictions, now is a simple service. It listens on the
message bus for any incoming messages on its own message queue. This message queue it a
data processor-specific message queue. All communication with this particular data processor
from other PoSeID-on components, including other data processors, will flow through this queue.
Every message is simply forwarded to one of the connected clients. Because operations on an
AMQP (Advanced Message Queuing Protocol) queue are, by protocol design, atomic, this creates
a simple FIFO load balancing structure on the transmit side of the communication. On the
receiving end of the message, the API server simply forwards the message from the API client
onto the right recipient queue. Communication with the blockchain API can be done in a similar
fashion.

The data processor API client consumes the aforementioned WebSocket protocol and takes care
of all the protocol-specific plumbing; message construction, verification, encryption and error
handling. For ease of integration, the API client then, on its turn, needs to expose an API that is
much more easily integrated into existing systems. The exposed API will need to use a protocol
that is both readily available in many programming languages/frameworks, bi-directional and

inherently message-based. The go-to protocol in this scenario is WebSockets; the same protocol
family used between the API server and API client. The protocol itself, however, is much simpler.

The way this API can be integrated is by allowing only local connections to this WebSocket API
endpoint. Either by means of a firewall or, preferably, using a local UNIX socket with the right
access restrictions. Since the number of API client instances does not matter, it allows for a simple
one-client-per-machine or even a one-client-per-process deployment scheme on the data
processor’s systems.

The assumption made in this scenario is that the data processor’s systems can handle any
synchronisation needed to keep the protocol working. Incoming messages might warrant a
response or, conversely, might be responses to messages sent before. The deployment scenario
assumes an ACID-compliant RDBMS or something equivalent takes care of the association by
keeping state.

Figure 19 - Communication between PoSeID-on and the Data Processor API

 Development status

This section briefly exposes the important milestones and how they have been organized and
achieved. The main issues are denoted by the delay of the ending date compared to the initially
intended due date. At this point is important that no major issue has been a problem to the right
finalization of other tasks or the deadline for that task itself.

Every WP3 technical task had to be finished for the project General Assembly that took place on
2019, July 9th at Coimbra (Portugal).

Some of the sub-tasks (from T3.1, T3.2 and T3.4) suffered a delay. The initial due date proposed
for each task is marked in the Table 3 (its legend in Table 4). The green color is reserved for the
week that the task was finally achieved. When the sub-task was finished on time the yellow color
doesn’t appear.

The impact was minimized because the only need between tasks was that the T3.3 should be
completed before the T3.1 works started.

The cryptographic key management system was delayed because it needed decisions that were
taken the week of 2nd July. That sub-task is still under revision until the all-technical-components
integration is finished, being affected by components and works from WP4 and WP5.

Finally, PoSeID-on Smart Contracts were developed on time for the 4th June, but the testing phase
took three more weeks to allow the testing along the Access Manager and the BC Client.

Table 3 - Development status

Table 4 - Legend

 Upcoming week

 Past week

 Final submission week

 Coimbra GA

 Upcoming due date

 Past due date

 Finished task week

TASK 21M 28M 4J 11J 18J 25J 2Jl 9Jl
T3.1: Privacy ensuring Permissioned BC implementation

Deploy the network nodes and make them available in the cloud

Deploy the cryptographic key management to enable identification of the

parties

Design an Access Manager to enable the permissioned blockchain

T3.2: Private data managing smart contracts implementation

Research Smart Contract generation and testing/verification mechanisms

T3.3: BC Client implementation

Design and implement the Blockchain client that will serve as the main point

of access to the Blockchain network

Design and implement an API to allow other PoSeID-on Modules access the

Blockchain network

T3.4: DP API implementation

Implement the API module that runs on cloud and is able to manage all API

requests from all services linked to the PoSeID-on platform

 Security remark

Blockchain general philosophy is thought to permit the traceability of the user actions,
pseudonymizing their identities and securing their information by cryptographic means. But these
mechanisms ensure pseudonymization instead of anonymization for Person Identifiable
Information.
The proposed ledger management alternative approach is based on “burnable pseudo-identities”
which will ensure that the PII of the Data Subject (the user of services managed by PoSeID-on)
is not traceable by anyone. The aim of this proposal is to allow user interactions in a way that
can be traceable over the time while the user is using PoSeID-on services and can be compliant
with GDPR and `right to be forgotten` when the user requests it.

Moreover, with the application of Blockchain, permissions over Data Subject’s PII and transactions
of Data Subject’s PII between Data Processors will be stored in a distributed ledger that allows
participant organizations to share Data Subject’s information and yet to share a mechanism to
protect that data from being flowed to non-participating organizations. Each of the participant
organizations will be a peer participating in the distributed ledger by keeping a private ledger
synchronised with the rest. Due to the fact that PII permissions and transactions are both a form
of PII as well, there is a need of protecting their confidentiality and integrity.

The PoSeID-on ledger will be based on a permissioned blockchain technology, with a central
authority providing the right access to participate as PoSeID-on member. This will cause faster
transaction speeds and will protect the implementation from the risks public blockchains are
facing.
The functionality of the system will be ridden by Smart Contracts stored within this blockchain,
and they will describe the management of the requests and permissions to grant, deny and check
PII access.
The blockchain API abstracts all Blockchain operations into a high-level API suitable for integration
into other applications. This API will only be accessible through a token/secret that will grant or
access caller to respective endpoints.

An important factor responsible for the communication between the components of the PoSeID-
on platform and external organizations is the data processor API.
The solution adopted for the data processor API is to split up the API into two components; an
API server and an API client. This approach has the following security benefits:

• hampers the onboarding of new organisations onto the PoSeID-on platform. By supplying
both the API server and the API client, this onboarding process is made less obtrusive.

• Since all communication is, by design, end-to-end encrypted, the API client is responsible
for one end of the encryption. The other end can be any other PoSeID-on subsystem.

• each associated data processor gets its own endpoint and, by extension, its own (set of)
API servers.

• Adoption of mutually authenticated TLS (mTLS) for the secure communications between
the Data Processor API server and API client

• the data processor’s systems can handle any synchronisation needed to keep the protocol
working.

In conclusion, the security of the entire platform is guaranteed, in addition to the intrinsic
algorithms of the blockchain, also by conditions that safeguard both the PII and the blockchain
itself from external attacks.

5. Initial Prototype of Blockchain Functionality

The heart of the PoSeID-on decentralized platform for user data privacy protection will be
designed over a Blockchain network, Smart Contract management driven and accessed by known
entities, but opened to every PoSeID-on platform user, so the data will be protected but
transparent at the same time.
The development will be led by the design described at this deliverable, according to the proposed
architecture and in accordance with the integration with other PoSeID-on modules.
In this section, those principles and developments will be described.

 Smart Contracts and Blockchain functionalities

Along this subsection, Smart Contracts and Blockchain functionalities are going to be explained.

5.1.1. Smart Contracts

Smart Contracts on PoSeID-on have been implemented following the KISS principle. A specific
structure has been designed to allow reusing functions for all the use case scenarios. In that line,
Solidity good practices have been adopted due to the peculiarities of the EVM. This has shaped
the functions and the way they are called/used.

There are several secondary actions, routines and helpers created to design optimized Smart
Contracts on PoSeID-on, leveraging the execution of non-trivial operations, such as:

• Multi attribute-based information lookup

• Data concatenation

• Permission state management

• Input data validation

5.1.1.1. Internal Permission Model and Flow

PoSeID-on Permission model has been developed in a way that Data Processors can’t become
rogue Data Processors nor spammer Data Processors.

According to the internal Smart Contract model design, Data Processors are only allowed to
REQUEST a single permission request for only one service and field at a time. This permission
can be updated to notify a state change and set the permission to ALLOWED, DENIED or
EXPIRED. To better understand the possible state transitions managed from the Blockchain in an
auditable (but still private) manner, is shown in the flow diagram from Figure 20.

Figure 20 - Internal Permission Model and Flow

Each status has one purpose. Among all, the permission life makes sense (Table 5).

Table 5 - Permission Status / Description

Permission Status Description

REQUESTED A DP makes a new permission request for service X and Field
Y. This permission is stored in the ledger in order to be resolved
by its target DS

ALLOWED The permission target DS grants the permission and DP will be
notified in next attempt that it its allowed to use that DS data.

DENIED The permission target DS revokes the permission and DP will
be notified in next attempt.

EXPIRED The stored permission data is flagged as expired by initial
permission conditions. Therefore, DP is notified about this
expiration

Finally, while the Smart Contract code designing phase, two main potential-and-non-trivial
scenarios have been considered:

• In the first one, a Data Subject can revoke a specific permission. Later, its action can be
rolled back, allowing the Data Processor to access that information again for a specific
service without having asked for it.

• In the other one, a Data Subject could grant twice an already expired permission.

5.1.2. Blockchain Functionalities

In order to be able to operate with the Blockchain using Smart Contracts, some permissions have
been implemented (following the description in D2.2). There are some strategies which allows to
redirect the execution from one entry Smart Contract to different backend Smart Contract, but
mainly it will be done by giving governance operations to the entry Smart Contracts. Just specified
accounts will be able to implement maintenance actions.

It was stated at the WP2 that “field” is an open field. It is not “single data” nor “series of data”.
The Data Subject grants or revokes the data requested by the Data Processor, whatever it is.

A set of operations will be permitted to be done in blockchain with a decentralized execution view
(Table 6). This set of operations is the functionality face for the blockchain clients and thus the
Data Subject and Data Processor operation entry point. These operations will include: Request
PII Permission; Grant PII Permission; Revoke PII Permission; Check PII Permission; and PII
Access Notification. Next, we discuss each operation.

Table 6 - BC Functionalities

Function name Description Status

grant_permission grant permission for triplet [DP, DS, field_name] done

revoke_permission revoke permission for triplet [DP, DS, field_name] done

request_permission request permission for triplet [DP, DS, field_name] done

check_permission check permission for triplet [DP, DS, field_name] done

access_notification write access attempt for permission with [DP, DS,
field_name]

done

5.1.2.1. Request PII Permission

According to the GDPR, Data Processors need each Data Subject permission to collect and
manage his/her PII. A function will provide the appropriate mechanisms for a Data Processor to
request that kind of permission (Table 7).

Table 7 - Request PII Permission

Action defined in
D2.2

BC API access
(short codes)

Smart contract method Status

Request PII values
from one Data

Subject

None (it’s done via
Data Processor

API)

is_granted(dp, ds, field) done

Request access to
PII from one Data

Subject

GET
/dp/request/:ds/:field

request_permission(dp,ds,field) done

5.1.2.2. Grant PII Permission

When a specific permission is requested for a specific Data Subject, the Data Processor needs to
wait for that permission to be granted by the Data Subject. The operation timestamp will denote
the starting time for the permission to take effect, and the permission will automatically stop
having effect when the requested end time is reached. Therefore, this operation will be linked to
one previous permission request (Table 8).

Table 8 - Grant PII Permission

Action
defined
in D2.2

BC API access (short
codes)

Smart contract method Status

Grant
access to
PII to one

Data
Processor

/ds/:uid/permission/grant/:dp grant_permission(dp,ds,field) done

5.1.2.3. Revoke PII Permission

Every permission granted by a Data Subject has a validity period, denoted by the time when the
Data Subject grants the permission and the permission end time. But during that period, the Data
Subject can decide to revoke intentionally a specific permission for a specific Data Processor
Permission revocation, linked to a permission request (Table 9).

Table 9 - Revoke PII Permission

Action
defined
in D2.2

BC API access (short
codes)

Smart contract method Status

Revoke
access to
PII from

one Data
Processor

/ds/:uid/permission/revoke/:dp revoke_permission(dp,ds,field) done

5.1.2.4. Check PII Permission

Each time a Data Processor need to use (e.g. access or management) PII from a Data Subject,
the PII must be requested to PoSeID-on and the permission for the specified action will be
checked against blockchain. This one will be a “get” operation that returns whether a Data
Processor has permission to access specific PII or not. This operation is embedded by the PII
Access Notification because every time an access is notified, its corresponding permission will be
checked (Table 10).

Table 10 - Check PII Permission

Action
defined in

D2.2

BC API access (short
codes)

Smart contract method Status

Check PII
Permission

/dp/:uid/permission/status check_permission(dp,ds,field) done

5.1.2.5. PII Access Notification

Since Data Subject information is not stored by the ledger, the information is not securely
managed from the inside of the blockchain system. The information is provided in a way that
blockchain can’t control its access by the decentralized mechanisms used to hide the information
to outsiders. Because of this, PII access by the Data Processors (including both successful data
reception and unsuccessful data requests) will have to be notified to blockchain by other PoSeID-
on components. This operation will notify the Blockchain Module. When a Data Processor is trying
to use PII protected by a specific permission, the access will be granted or denied, and it will be
stored in the ledger. This operation will be used to identify anomalous behaviour in the network
by Data Processors (Table 11).

Table 11 - PII Access Notification

Action
defined in

D2.2

BC API
access
(short
codes)

Smart contract
method

Status

PII Access
Notification

not
accessible

from
REST

notify_access(dp,
ds, field)

done

5.1.2.6. Other non-related functionalities

There are some actions that were defined in the deliverable D2.2 that affect the Blockchain
platform data and are related to the work done by this module which has been explained along
this section. But these functionalities are not directly managed by the Blockchain network. Instead
of that, the Data Processor API will be in charge of performing the actions listed in the next table
(Table 12).

Table 12 - Other non-related functionalities

Action defined in D2.2 BC API
access
(short
codes)

Smart
contract
method

Status

Request access to PII from all Data Subjects *

N/A (it’s
done via

Data
Processor

API)

none

N/A

Send data containing PII to be analysed *

N/A (it’s
done via

Data
Processor

API)

none

N/A

View PII known to one Data Processor *

N/A (it’s
done via

Data
Processor

API)

none

N/A

Update PII known to one Data Processor *

N/A (it’s
done via

Data
Processor

API)

none

N/A

The reason of delegating the work on the Data Processor API module is because this development
is affecting Personal Data itself, and not the actions or permissions related to it.

5.1.3. Key Management

This subsection will explain how the key management works in the system and how the Blockchain
users (both Data Subjects and Data Processors) will be provided with their own, auto generated,
unchangeable, private, recoverable and secure key set. For this purpose, a full offchain-but-
distributed managed system has been created.

In order to comply with the highest security and privacy requirements, PoSeID-on members who
manage a Blockchain node must individually take care of the proper management of
cryptographic content and their private node management keys. This is because there is no
central repository where this information is stored. Therefore, the management of the nodes, and
the management of the keys, will be carried out by the data processors (DP) themselves.
Moreover, due to the Quorum design, the software used for the implementation of the ledger,
the management of these keys will have to be done by software.

This implies that:

• The keys cannot be stored in an HSM.
• The keys must be known by at least one physical server or virtual machine.
• The keys that belong to node, mostly those used to setup a Coinbase account, must be

stored in the node itself and execute the process of unlocking on demand.

On the other hand, the keys belonging to the users (Data Subjects or DS) will be protected by
the BC API component. This custody will also be done by Software and the stored content will be
secured through the standard and management model of Ethereum V3 KeyStore.

5.1.3.1. Key Storage

An Ethereum V3 KeyStore also known as V3 wallet, is an encrypted version of a unique Ethereum
private key that users will use to sign the transactions. If users lose this file, users lose access to
their unique private key which means they lose the ability to sign and execute transactions. If no
proper recovery mechanisms are designed, this process is unrecoverable.

The actual keys storage mechanism requires to encode information using at least AES-128-CTR
crypto protocol in order to store the data in servers’ filesystems. By default, and following
conventions, keystores filenames are 128-bit UUID given to the secret key (a privacy-preserving
proxy for the secret key's address) so that files will be saved as uuid.json. All such files have an
associated password. To derive a given uuid.json file's secret key, first derive the file's encryption
key; this is done through taking the file's password and passing it through a key derivation
function as described by the kdf key. KDF-dependent static and dynamic parameters to the KDF
function are described in kdfparams key.

The KDF (key derivation) function is predefined to pbkdf2, being PBKDF2 kdfparams as
follows:

• prf: Must be hmac-sha256;
• c: number of iterations to be made in KDF routine;
• salt: salt passed to PBKDF algorithm;
• dklen: length for the derived key. Must be bigger than 32.

Once the file's key has been derived, it should be verified through the derivation of the MAC. The
MAC should be calculated as the SHA3 (keccak-256) hash of the byte array formed as the
concatenations of the second-leftmost 16 bytes of the derived key with the ciphertext key's
contents.

An example content of encrypted storage is shown below:

{
 "crypto": {
 "cipher": "aes-128-ctr",
 "cipherparams": {
 "iv": "6087dab2f9fdbbfaddc31a909735c1e6"
 },
 "ciphertext": "5318b4d5bcd28de64ee5559e671353e16f075ecae9f99c7a79a38af5f869aa46",
 "kdf": "pbkdf2",
 "kdfparams": {
 "c": 262144,
 "dklen": 32,
 "prf": "hmac-sha256",
 "salt": "ae3cd4e7013836a3df6bd7241b12db061dbe2c6785853cce422d148a624ce0bd"
 },
 "mac": "517ead924a9d0dc3124507e3393d175ce3ff7c1e96529c6c555ce9e51205e9b2"
 },
 "id": "3198bc9c-6672-5ab3-d995-4942343ae5b6",
 "version": 3

}

5.1.3.2. Relationship between Transport Key and Blockchain Key

The target of this relationship is to identify the users without letting the Data Processors to access
PII that they are not allowed to view. Apart from the Blockchain keys, which are generated and
managed by the BC API and kept securely without sharing with the Web Based Dashboard and
the Data Processor API, the first step for a successful key management is to be authenticated
against the BC API. It will be done using a passphrase and the key (Ki) is decrypted and then
used. Ki is used only once, for that moment because a rotation period (R) exists.

The transport key used in the middle, does not rotate as often as Blockchain keys, so the focus
can be put on the implementation of Blockchain keys management and rotation.

For Data Processors, this transport key is stored in the Data Processor API client and supplied
through a secure channel. This behaviour should be very similar to how TLS certificates and keys
are handled in the HTTPS realm/handshake negotiation process.

For Data Subjects, the transport key storage mechanism will be provided by the Web Based
Dashboard. As an alternative, the Data Subject keys can also be managed by the BC API, using
the same symmetric key used to create the Blockchain key. After authenticating the Data Subject
with the correct passphrase, the public/private keypair can be returned to be used by the Data
Subject.

5.1.3.3. Key Rotation Period

The strong key rotation mechanism was promoted by the need of adding an extra security layer
to power the anonymization in a Blockchain ecosystem.

By design, the majority of the Blockchain platforms are pseudonymous. This means that users
don’t have real identifications and their real-world identity is still unknown. But most of them
allow to link the user pseudonyms to create a trend and trace of their movements in the networks.
This means that a third-party viewer inspecting the network can dump and read the ledger,
creating and fetching statistical results and further information about the network users.

Among the actions that an external can perform over others information includes, but is not
limited to:

• How many transactions are made from one specific account
• How many transactions are made to one specific account
• Create profiles
• Detect activity periods and usage patterns
• Create relationship between Blockchain users

To cover the GDPR needs this is something that should be avoided. To create a platform
committed with privacy rules and best practices, a key rotation mechanism has been designed to
overcome this functionality.

The key rotation is based on well-known tested working standards in Ethereum, but specifically
modelled for PoSeID-on. The target standards are:

• A Heuristic Deterministic Key Generation Algorithm
• A V3 Key Storage

In order to use a HDKGA using Ethereum/Quorum compliance algorithm (secp256k1), an
HDwallet implementation such as BIP32 needs to be implemented as part of PoSeID-on services.
This process is handled by the BC API, becoming transparent to Data Processors and data
Subjects.

Internally, Master Keys creation steps involves the generation of a random seed with its proper
mnemonic to be used. This process is defined in following figure 21 and figure 22:

Figure 21 - Multiple account generation algorithm for Burnable Identities and Key rotation support [33]

Figure 22 - HDwallet creation example [34]

5.1.4. Blockchain Client

Any external system that needs to be queried in order to get some information requires two
things:

• A protocol of communication
• A client to communicate with

In our current scope, PoSeID-on will rely on quorum ledger requirements for both communication
protocol and client implementation. This means that communication protocol will be JSON-RPC
communication over HTTP connection. Thus, quorum clients will only need to be compliance with
HTTP standard defined at Hypertext Transfer Protocol (RFC 2616) and encapsulate their
messages as JSON-RPC following the standard (Figure 23).

Figure 23 - JSON-RPC message exchange example

This behaviour must remain the same independently of the client which request connection to
ledger nodes. It means that all devices, smartphones, desktop applications, etc, will have to

communicate using this standard for those situations in where a direct peer communication is
required (Figure 24).

Figure 24 - Default Blockchain Client Implementation for Standard Quorum Implementation

In PoSeID-on, Blockchain complexity is encapsulated over a RESTful API so that, end users and
clients will only need to be compatible with REST APIs (Figure 25).

Figure 25 - Blockchain Client Implementation for PoSeID-on platform

The implemented Blockchain API formal description is as documented in the Annex I.

6. Integration in PoSeID-on architecture

The overall integration of the PoSeID-on modules, as it is in a current state, it is described in
D4.1 (Section 6), but, in this document, it is described a brief introduction regarding the
integration done on several levels.

 Packaging

The web-based dashboard components are built using two language runtimes; Python and
Node.js. Both language runtimes get their own OCI base container image, inheriting from the
common PoSeID-on base image, in order to centralise all common dependencies between
components. This helps with centrally rolling (security) updates across the entire platform. Every
component gets its own git repository, containing the source code and accompanying
documentation.

Versioning of container images follows the git branching model (not commonly done). The git
branch name is used as the tag. End users do not need any configuration changes to update to
the latest stable container image; they only need to pull updates and restart their containers.

Container images can be automatically built and published to the image registry out of the source
code repositories by simply using the supplied Makefiles (for more information, see Section 6.1
from D4.1).

 Configuration

Following 12-factor standards and the choice for Kubernetes, all configuration of the software
making up the components happens through environment variables. From the get-go all variables,
including secrets, are supplied through the runtime environment.

This means that no secrets or default configuration can be found in the source code repositories.
However, there will be some documentation about what environment variables will be used and
what the values should be.

Configuration about how the application should be started is done through the Dockerfile, which
is part of the OCI container image.

The final part of the configuration, the deployment settings, are supplied using Kubernetes
configuration files in the yaml format. For development purposes, patches using kustomization
are applied that make the components behave in a more contained way.

 Communication

For communication with the rest of the platform, the web-based dashboard accepts messages for
data subjects and it sends messages to other components on behalf of the data subjects. All the
communication flows through the message bus (see Figure 26 and Figure 27).

The message bus protocol specifies that the name of the AMQP queue is derived from the
recipient’s public key. However, having a queue for each data subject would run into scaling
issues. Therefore, the dashboard listens on a single queue named dashboard on behalf of all data
subjects. As specified before, the queue will be consumed into a Redis cache immediately on
message arrival.

The only component that is not accessed by the message bus is the blockchain API. For
communication with the API, a separate library still needs to be developed. At the moment of
writing this document, the API is not available yet.

Figure 26 - Data Processor’s Blockchain Module

Figure 27 - Integration with Message bus diagram

 Data Storage

The description regarding what data is stored, how it is stores and how this is configures is
detailed in the subsection 5.1.3 of this document, nevertheless, as a summary it can be said that:
“…PoSeID-on members who manage a Blockchain node must individually take care of the proper
management of cryptographic content and their private node management keys. This is because
there is no central repository where this information is stored. Therefore, the management of the
nodes, and the management of the keys, will be carried out by the data processors (DP)
themselves. Moreover, due to the Quorum design, the software used for the implementation of
the ledger, the management of these keys will have to be done by software.” (see point 5.1.3 for
more information).

 Example of the Integrated Use Case between two pilots

In order to provide an integrated platform with all components described, following (Figure 28)
is the description of an example of the Integrated Use Case between two pilots:

Figure 28 - Integrated Use Case between two pilots

Step 1: The user connects to the web app front end and access to the web service through a
dedicated user and password.
Step 2: The user wants to enable a new service that requires the availability of PII not yet
managed by the national application
Step 3: The user wants to use “PoSeID-on” to retrieve PII data needed to enable the service.
The user clicks on “get my data from PoSeID-on” button.
Step 4: The user XYZ will be redirected to PoSeID-on web dashboard (via reverse proxy) to
authenticate himself to the platform (through eIDAS credential). A positive feedback will be sent

to the national application when eIDAS provider confirm that both, user and password for the
user XYZ are correct.
Step 5: After authentication process was fully completed, to retrieve PII data needed to enable
the service, national application Data Processor API will send a request to the PoSeID-on data
processor API module to have this data linked to the user XYZ.
Step 6: The user XYZ (still waiting on PoSeID-on web dashboard) will give his consent to national
application to use his data.
Step 7: Web application backend communicates to the blockchain to change data permission
and to define a new block and register the transaction on the smart contract.
Step 8: Data processor API ask to blockchain if PoSeID-on manages this data for user XYZ.
Blockchain smart contract confirm that the searched data is managed by PoSeID-on and it is
archived in the National Application 2national application 2.
Step 9: PoSeID-on data processor API asks to National Application 2 (data processor API) PII
data needed.
Step 10: National Application 2 data processor API read the data required within the local user
data repository and returns it to the PoSeID-on data processor API.
Step 11: PoSeID-on data processor API now can send data required to National Application 1
data processor API.
Step 12: Data processor API now can store received data on National Application 1 user data
repository.
Step 13: Web app backend can now enable service and use PII data stored on local repository.
All the transactions are managed by the message bus and are analysed by PDA and RMM.

7. Innovation summary

The work carried out during the design and implementation of the Blockchain network and the
Smart Contracts that coexist inside it serve to guide the functionality of the system and protect
the information that is handled by the data subjects to manage the specified permissions.

New advanced identification techniques have been added by PoSeID-on to manage the
relationship between transport keys and Blockchain keys. They are generated and managed by
the BC API and kept securely without sharing with the Web Based Dashboard and the Data
Processor API. The identification of Data Subjects (extensible to any type of user) as a key
scientific objective has been achieved without letting the Data Processors to access PII that they
are not allowed to view, through the key management against the BC API.

The management of the user Blockchain accounts is another important objective in the innovation
achieved by PoSeID-on. This is critical because of the importance the governments are given to
the personal data and PII. Following the scientific objective of accomplishing the GDPR challenges
with special attention to its Article17, the solution taken is to unlink the data from the system
without breaking the block record and without rejecting the Blockchain original philosophy using
burnable pseudo-identities. The burnable pseudo-identity is the mechanism to create a pool of
pseudo-identities for each Data Subject user that can be erased by request.

8. Conclusion

After the research and the work carried out along WP3 activities, it can be concluded that the
objectives (see Section 2) has been achieved successfully, applying the innovation mentioned in
Section 7. The following steps are the development of the Blockchain components and the DP
API final versions, the integration of the components developed in the WP3 with the other PoSeID-
on components and the adjustment to provide the intended Use Case pilots.

9. References

The references mentioned throw this document are the following:

[1] What is a Permissioned Blockchain Network?
[2] And then there were 8 - a look at the leading blockchain frameworks
[3] Blockchain for government and public services, Tom Lyons, Ludovic Courcelas, EuBlockchain
Observatory and Forum, 7 December 2018.
[4] Zug And uPort See First Citizens’ Identity Registered On The Ethereum Blockchain, ETHNews,
17 November, 2017.
[5] Switzerland’s first municipal blockchain vote hailed a success, SwissInfo, 2 July 2018.
[6] Zug residents can now ride e-bikes using their uPort-powered Zug Digital IDs, Alice Nawfal,
Medium, 14 November, 2018
[7] Bitland’s African Blockchain Initiative Putting Land On The Ledger, Forbes, 5 April, 2016.
[8] Indian State Partners With Blockchain Startup for Land Registry Pilot, Coindesk, 10 October,
2017.
[9] Sweden’s Land Registry Demos Live Transaction on a Blockchain, Coindesk, 15 June, 2018.
[10] HM Land Registry to explore the benefits of blockchain, Gov.uk, 1 October, 2018.
[11] Estonian e-health record.
[12] A Nordic way to blockchain in healthcare, HiMiss Europe, 26 February, 2018.
[13] Academic Certificates on the Blockchain, University of Nicosia Blockchain Initiative.
[14] Malta Pilots Blockchain-Based Credentials Program, IEEE Spectrum, 5 June, 2018.
[15] University consortium set up to authenticate degrees using blockchain technology, New
Straits Times, 9 November, 2018.
[16] bcdiploma.com
[17] West Virginia Introduces Blockchain Voting App for Midterm Election, Slate, 25 September,
2018.
[18] Russia Is Leading the Push for Blockchain Democracy, Coindesk, 21 Februa-r y, 2018.
[19] E. Yavuz, A. K. Koç, U. C. Çabuk and G. Dalkılıç, "Towards secure e-voting using ethereum
blockchain," 2018 6th International Symposium on Digital Forensic and Security (ISDFS), Antalya,
pp. 1-7. doi: 10.1109/ISDFS.2018.8355340, 2018.
[20] Singapore regulator, OCBC, HSBC, MUFG create ‘Know Your Customer’ blockchain prototype,
The Business Times, 3 October, 2017.
[21] Smart Dubai: Dubai Blochkchain strategy.
[22] The Application of Blockchain Technology in E-Government in China, H. Hou, 2017 26th
International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC,
2017, pp. 1-4. doi: 10.1109/ICCCN.2017.8038519
[23] Blockchain Technology as a Support Infrastructure in e-Government, Ølnes, Svein & Jansen,
Arild. (2017). 10.1007/978-3-319-64677-0
[24] Art. 17 of GDPR
[25] Quorum overview.
[26] Quorum API details.
[27] https://www.npmjs.com/package/bip39
[28] BIP39
[29] Private transaction execution flow in Quorum
[30] Network permissioning.
[31] How to secure REST APIs using the key id and the secret key can be found at: here or here.
[32] Example taken.

https://monax.io/learn/permissioned_blockchains/
https://medium.com/blockchain-blog/and-then-there-were-8-a-look-at-the-leading-blockchain-frameworks-7fc8c0b39680
https://www.eublockchainforum.eu/sites/default/files/reports/eu_observatory_blockchain_in_government_services_v1_2018-12-07.pdf
https://www.ethnews.com/zug-and-uport-see-first-citizens-identity-registered-on-the-ethereum-blockchain
https://www.swissinfo.ch/eng/crypto-valley-_-switzerland-s-first-municipal-blockchain-vote-hailed-a-success/44230928
https://medium.com/uport/zug-residents-can-now-ride-e-bikes-using-their-uport-powered-zug-digital-ids-7ed31ac9d621
https://www.forbes.com/sites/rogeraitken/2016/04/05/bitlands-african-blockchain-initiative-putting-land-on-the-ledger/#55cfb99d7537
https://www.coindesk.com/andhra-pradesh-partners-with-chromaway-to-develop-blockchain-land-registry
https://www.coindesk.com/sweden-demos-live-land-registry-transaction-on-a-blockchain
https://www.gov.uk/government/news/hm-land-registry-to-explore-the-benefits-of-blockchain
https://e-estonia.com/solutions/healthcare/e-health-record/
https://www.himss.eu/himss-blog/nordic-way-blockchain-healthcare
https://www.unic.ac.cy/blockchain/free-mooc/
https://spectrum.ieee.org/tech-talk/computing/networks/malta-pilots-blockchainbased-credentials-program
https://www.nst.com.my/news/nation/2018/11/429615/university-consortium-set-authenticate-degrees-using-blockchain
https://www.bcdiploma.com/
https://slate.com/gdpr?redirect_uri=%2Ftechnology%2F2018%2F09%2Fwest-virginia-blockchain-voting-app-midterm-elections.html%3Fvia%3Dgdpr-consent%26via%3Dgdpr-consent&redirect_host=https%3A%2F%2Fslate.com
https://www.coindesk.com/russias-capital-leading-charge-blockchain-democracy
https://www.businesstimes.com.sg/banking-finance/singapore-regulator-ocbc-hsbc-mufg-create-know-your-customer-blockchain-prototype
https://scgn.smartdubai.ae/pdf/dubai-blockchain-strategy.pdf
https://ieeexplore.ieee.org/document/8038519
http://www.privacy-regulation.eu/en/article-17-right-to-erasure-%27right-to-be-forgotten%27-GDPR.htm
https://github.com/jpmorganchase/quorum/wiki/Quorum-Overview
https://github.com/jpmorganchase/quorum/blob/master/docs/Getting%20Started/api.md
https://www.npmjs.com/package/bip39
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/jpmorganchase/quorum/wiki/Transaction-Processing
https://github.com/jpmorganchase/quorum/wiki/Security#network-permissioning
http://s3.amazonaws.com/doc/s3-developer-guide/RESTAuthentication.html
https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.toolkit.doc/tapim_sec_api_config_scheme_create_apikey.html
https://www.ibm.com/support/knowledgecenter/en/SSZFB2_3.0.1/com.ibm.apimgmt.apionprem.doc/tutorial_apionprem_security_identify_app.html

[33] Image.
[34] Image.

https://www.oreilly.com/library/view/mastering-bitcoin/9781491902639/images/msbt_0410.png
https://coinsutra.com/wp-content/uploads/2017/07/HD_Wallets.jpg

Annex I. Blockchain API formal documentation

URI scheme

BasePath : /api
Schemes : HTTP

I. POST /auth/signin
• Parameters

Type Name Schema

Body SigninVm required SigninVm

• Responses
HTTP Code Schema

201 SigninResponseVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
API#Authentication

II. GET /client/id/{id}
• Parameters

Type Name Schema

Path id required string

• Responses
HTTP Code Schema

200 UserVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
API#Management

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23signinvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23signinresponsevm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23uservm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception

III. POST /client/register
• Parameters

Type Name Schema

Body RegisterVm required RegisterVm

• Responses
HTTP Code Schema

201 UserVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
API#Management

IV. GET /client/{apikey}
• Parameters

Type Name Schema

Path apikey required string

• Responses
HTTP Code Schema

200 UserVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
API#Management

V. POST /dp
Register a new Blockchain Data Processor

• Parameters
Type Name Schema

Body DPRegisterDto required DPRegisterDto

• Responses
HTTP Code Schema

201 DPVm

400 ApiException

• Consumes
application/json
• Produces
application/json

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23registervm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23uservm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23uservm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpregisterdto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception

• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

VI. POST /dp/generateTransport/
Generate a new TransportKey

• Parameters
Type Name Schema

Body DPCreateTransportKeyDto required DPCreateTransportKeyDto

• Responses
HTTP Code Schema

201 DPTransportKeyVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

VII. POST /dp/{cert}/permissions/request/{field}/{serviceID}/{certDS}
Request permission from a Data Processor to a Data Subject

• Parameters
Type Name Description Schema

Path cert required the Transport key string

Path certDS required The Data Processor cert to grant/revoke
permission

string

Path field required The field permission string

Path permissionID required The permissionID string

Path serviceID required The serviceID string

Body DPActionBodyDto
required

 DPActionBodyDto

• Responses
HTTP Code Schema

201 DPVm

400 ApiException

• Consumes

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpcreatetransportkeydto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dptransportkeyvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpactionbodydto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception

application/json
• Produces
application/json
• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

VIII. GET /dp/{cert}/permissions/{permissionID}
DEBUG ONLY: Return permission data permission ID to DS

• Parameters
Type Name Description Schema

Path cert required the Transport key string

Path certDS required The Data Processor cert to grant/revoke permission string

Path field required The field permission string

Path permissionID required The permissionID string

Path serviceID required The serviceID string

• Responses
HTTP Code Schema

200 < DPVm > array

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

IX. GET /dp/{cert}/permissions/{permissionID}/{certDS}
Return true is Data Processor has requested the permission ID to DS

• Parameters
Type Name Description Schema

Path cert required the Transport key string

Path certDS required The Data Processor cert to grant/revoke permission string

Path field required The field permission string

Path permissionID required The permissionID string

Path serviceID required The serviceID string

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer

• Responses
HTTP Code Schema

200 < DPVm > array

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

X. POST /dp/{cert}/recover/
Recover a previously registered user

• Parameters
Type Name Schema

Path cert required string

Body DPRecoverDto required DPRecoverDto

• Responses
HTTP Code Schema

201 DPVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

XI. PUT /dp/{cert}/refresh/
Refresh a DP account

• Parameters
Type Name Schema

Path cert required string

Body DPRecoverDto required DPRecoverDto

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dprecoverdto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dprecoverdto

• Responses
HTTP Code Schema

201 DPVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DP

• Security

Type Name

apiKey bearer

XII. POST /ds
Register a new Blockchain Data Subject

• Parameters
Type Name Schema

Body DSRegisterDto required DSRegisterDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XIII. POST /ds/generateTransport/
Generate a new TransportKey

• Parameters
Type Name Schema

Body DSCreateTransportKeyDto required DSCreateTransportKeyDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dpvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsregisterdto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dscreatetransportkeydto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XIV. POST /ds/{cert}/permissions/{permissionID}/grant/{certDP}
Grant serviceID field permission to a Data Processor

• Parameters
Type Name Description Schema

Path cert required the Transport key string

Path certDP required The Data Processor to
grant/revoke permission

string

Path field required The field permission string

Path permissionID required The id permission to grant string

Path serviceID required The serviceID string

Path status required The status of the permissions to
get

enum (requested, granted,
revoked)

Body DSActionBodyDto
required

 DSActionBodyDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XV. POST /ds/{cert}/permissions/{permissionID}/revoke/{certDP}
Revoke serviceID field permission to a Data Processor

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsactionbodydto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer

• Parameters
Type Name Description Schema

Path cert required the Transport key string

Path certDP required The Data Processor to
grant/revoke permission

string

Path field required The field permission string

Path permissionID required The id permission to grant string

Path serviceID required The serviceID string

Path status required The status of the permissions to
get

enum (requested, granted,
revoked)

Body DSActionBodyDto
required

 DSActionBodyDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XVI. GET /ds/{cert}/permissions/{status}
List permissions filter by status.

• Parameters
Type Name Description Schema

Path cert required the Transport key string

Path certDP required The Data Processor to
grant/revoke permission

string

Path field required The field permission string

Path permissionID required The id permission to grant string

Path serviceID required The serviceID string

Path status required The status of the permissions to
get

enum (requested, granted,
revoked)

Body DSActionBodyDto
required

 DSActionBodyDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsactionbodydto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsactionbodydto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XVII. POST /ds/{cert}/recover/
Recover a previously registered user

• Parameters
Type Name Schema

Path cert required string

Body DSRecoverDto required DSRecoverDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XVIII. PUT /ds/{cert}/refresh/
Refresh a DS account

• Parameters
Type Name Schema

Path cert required string

Body DSRecoverDto required DSRecoverDto

• Responses
HTTP Code Schema

201 DSVm

400 ApiException

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsrecoverdto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsrecoverdto
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23dsvm
file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23apiexception

• Consumes
application/json
• Produces
application/json
• Tags
POSEID-ON#DS

• Security

Type Name

apiKey bearer

XIX. Definitions

a. ApiException
Name Schema

error optional string

errors optional object

message optional string

path optional string

status optional string

statusCode optional number

timestamp optional string

b. DPActionBodyDto
Name Description Schema

lifetime required The lifetime of the permission Example : "100" string

passphrase required The passphrase needs to unlock dp Example : "tecnalia" string

c. DPCreateTransportKeyDto
Name Description Schema

name optional Name to use on generation of the transportKey Example : "myName" string

d. DPRecoverDto
Name Description Schema

mnemonic
optional

Mnemonic generated to recreate the HDWallet Example : "abba
hylu keso"

string

passphrase
optional

Passphrase to open the keystore Example : "myScrtT@k$n" string

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23bearer

e. DPRegisterDto
Name Description Schema

cert required eIDAS (electronic IDentification, Authentication and trust Services)
Token Example : "cert1"

string

language
optional

Lanaguage to use generatic mnemonic Example : "english" string

passphrase
required

Passphrase to protect the keystore Example : "myScrtT@k$n" string

f. DPTransportKeyVm
Name Description Schema

cert required Certificate generated Example :
"3epo3r2hjoi23ihr32oiuhr23i4r7823r7h823rhiu "

string

createdAt
optional

 string
(date-time)

id optional string

privateKey
optional

PrivateKey generated Example :
"83e2iuedwihuedhui32hui32ehiu32i3279yruh4rfhu7y32"

string

updatedAt
optional

 string
(date-time)

g. DPVm
Name Description Schema

cert required eIDAS (electronic IDentification, Authentication and trust
Services) Token Example : "cert1"

string

createdAt
optional

 string (date-
time)

id required string

mnemonic
optional

Mnemonic generated to recreate the HDWallet Example :
"myScrtT@k$n"

string

passphrase
optional

Passphrase to open the keystore Example : "myScrtT@k$n" string

updatedAt
optional

 string (date-
time)

h. DSActionBodyDto
Name Description Schema

passphrase required The passphrase need to unlock ds Example : "tecnalia" string

i. DSCreateTransportKeyDto
Name Description Schema

name optional Name to use on generation of the transportKey Example : "myName" string

j. DSRecoverDto
Name Description Schema

mnemonic
optional

Mnemonic generated to recreate the HDWallet Example : "abba
hylu keso"

string

passphrase
optional

Passphrase to open the keystore Example : "myScrtT@k$n" string

k. DSRegisterDto
Name Description Schema

cert required eIDAS (electronic IDentification, Authentication and trust Services)
Token Example : "cert1"

string

language
optional

Lanaguage to use generatic mnemonic Example : "english" string

passphrase
required

Passphrase to protect the keystore Example : "myScrtT@k$n" string

l. DSVm
Name Description Schema

cert required eIDAS (electronic IDentification, Authentication and trust
Services) Token Example : "cert1"

string

createdAt
optional

 string (date-
time)

id required string

mnemonic
optional

Mnemonic generated to recreate the HDWallet Example :
"myScrtT@k$n"

string

passphrase
optional

Passphrase to open the keystore Example : "myScrtT@k$n" string

updatedAt
optional

 string (date-
time)

m. RegisterVm
Name Description Schema

apikey required Minimum length : 6 string

name optional Example : "application1" string

role optional Default : "User" string

secret required Minimum length : 6 string (secret)

n. SigninResponseVm
Name Schema

token required string

user required UserVm

file:///d:/Users/107942/Desktop/PoSeID-on%20API%20v1.0.53.odt%23uservm

o. SigninVm
Name Description Schema

apikey required Minimum length : 6 string

secret required Minimum length : 6 string (secret)

p. UserVm
Name Schema

apikey required string

createdAt optional string (date-time)

fullName optional string

id optional string

name optional string

role optional string

updatedAt optional string (date-time)

q. Security
bearer Type : apiKey
Name : Authorization
In : HEADER

