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Executive Summary 
 
This deliverable provides details on the interim implementation of the Risk Management and 
Personal Data Analyser modules of PoSeID-on.  
The context and scope of both modules and relation to the PoSeID-on work plan are described 
as well as a high-level view of the PoSeID-on platform architecture. A brief overview of each 
module is also presented, for contextualization purposes.  
Afterward, the core of this document is presented: the implementation details of the Risk 
Management Module and Personal Data Analyser, going over the methodology adopted for 
the module’s design and development, each modules architecture and architectural decisions, 
implementation details and finally configuration and deployment information. Testing and 
validation are also briefly introduced, as the current stage of development and integration do 
not allow for in-depth testing.  
At their current stage, both modules are communicating using the protocol specified by the 
integration work package and are both receiving and preliminarily analysing data, using test 
datasets. Deployment is already possible through the use of containers. Details regarding the 
accomplished features and roadmap for future work can also be found in the last sections of 
the document.  
The work developed within these modules innovates in the way it identifies privacy exposure 
risks by using anomaly detection on system logs and operational information, which, as far as 
we know, is a completely novel area. Moreover, a fully GDPR-compliant monitoring module 
for personal data transactions also provides privacy analysis by using NLP, Machine Learning 
and privacy metrics and PII-related information.  
The conclusions and future work directions are discussed in the last section of the document.
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Glossary on PoSeID-on Terminology 
 

● GDPR – General Data Protection Regulation, (EU) 2016/679 - is a regulation in EU law 
on data protection and privacy for all individuals within the European Union (EU) and 
the European Economic Area (EEA). 

● Informed consent – freely given, specific and informed indication of the wishes of a 
Data Subject, by which he/she agrees to PII being processed. 

● Data Subject - a natural person that represents the primary target of GDPR. 
● Message bus – a combination of a common data model, a common command set, and 

a messaging infrastructure to allow different PoSeID-on components to communicate 
through a shared set of interfaces. 

● Permissioned Blockchain - a blockchain where every node and every user must be 
granted permissions to utilize the system. Permissions are generally assigned by an 
administrator. 

● Personal Data Analyser – a PoSeID-on component that monitors personal data 
transactions and related blockchain warnings in order to detect and prevent anomalies 
and ill-intended transactions. 

● Personal Identifiable Information (PII) – information related to a Data Subject, that 
can be used to directly or indirectly identify the person. 

● PII metadata – a set of data that describes and gives information about PII data. 
Depending on circumstances, metadata may be privacy-sensitive and require the same 
privacy protection mechanisms that are applied to PII. 

● PII Type – category of PII, such as ‘First name’, ‘Last name’, ‘Date of birth’, ‘Postal 
address’, ‘Contract’, etc. 

● PII Value – an instantiation of a PII Type, such as ‘John’, ‘Smith’, ‘June 5th, 1959’, or 
even an entire document, such as a signed contract, etc. 

● Pseudonym – an alternate name for a Data Subject so that he/she cannot be directly 
identified. Identification can still be done with the use of additional data that, typically, 
is kept outside the main system. 

● Risk Management Module – a PoSeID-on component that assesses and manages 
privacy risks by analysing transactions information. 
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1. Introduction 
 
Despite the widespread use of digital services, end-users remain worried about data privacy, 
data protection, digital identities, and data ethics. The goal of the PoSeID-on Project 
(“Protection and control of Secured Information by means of a Privacy Enhanced Dashboard”) 
is to develop a transparent ecosystem for personal data protection, supporting the pillars of 
the EU’s new General Data Protection Regulation (GDPR) with regard to digital security.   
In this deliverable, we document development details regarding the interim implementation of 
two crucial modules of the PoSeID-on Project: the Risk Management Module, and the 
Personal Data Analyser module. Additionally, as considerable research and experimentation 
were necessary before starting the actual development of these modules, conclusions and 
results obtained during this exploratory phase are also described and analysed, as they 
provide both background and rationale for the choices that were taken in the development. 
The technical details comprise the development and implementation, dependencies, 
deployment, and integration of the respective modules. Although deliverable 5.1 provides a 
fully detailed integration approach, we provide a high-level description of the integration 
approach adopted in the specific cases of the RMM and PDA modules, for contextualisation 
and completeness.  
The remainder of this section sets the scope of the current deliverable, explains its relation to 
the PoSeID-on workplan, and describes the document structure. 
 

1.1. Scope and Relation to the PoSeID-on Workplan 

This report is one of the initial deliverables of Work Package WP4 (“Platform components 
implementation”). It has been produced within the scope of Tasks T4.2 (“Risk Management 
Module implementation”) and T4.3 (“Personal Data Analyzer implementation”), and its goals 
are the following:  

• Building on the outcome of Deliverable D2.2 (“System Requirements and 
Architecture”) [1], proceed with a detailed specification of two of the modules (RMM 
and PDA) previously identified in the PoSeID-on’s general architecture.   	

• Document the stage of development (i.e., interim version) of the Risk Management 
Module and Personal Data Analyzer and respective implementation details. The final 
version is to be documented in Deliverable 4.4 (“Risk Management Module & Personal 
Data Analyzer - Final implementation”).	

• Provide a high-level view of the integration approach adopted for the RMM and PDA 
modules in relation to the general PoSeID-on architecture, which is further discussed 
in Deliverable D5.1 (“Preliminary PoSeID-on Integrated Platform”) [2] from Work 
Package 5.	

1.2. Document Structure 
This deliverable is structured as follows: 

A terminology/glossary has been provided at the beginning of the document, presenting short 
definitions and/or descriptions of selected terms used throughout this deliverable. While some 
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of these terms are generic (e.g. blockchain, data subject), others are specific to the PoSeID-
on project and extensively used in the technical discussions and descriptions throughout this 
document. 

Section 1 identifies the scope/goals of the document and its relation with the overall workplan 
of PoSeID-on.  

Section 2 reviews the PoSeID-on project requirements and general architecture. This allows 
the readers less familiar with the PoSeID-on project to understand the rationale behind the 
identified requirements and architectural design decisions, providing the user with a basis for 
more technical details in the sections that follow. 

Section 3 presents the work developed in the scope of the Risk Management Module (RMM). 
It describes the methodology and approach taken in the detection of privacy risks in the 
PoSeID-on project, including an overview of the applied state-of-the-art techniques. This is 
followed by the description and design of the module’s architecture, implementation details, 
configuration and deployment and, finally, testing and validation. 

Section 4 presents information regarding the Personal Data Analyser (PDA) module. The 
architecture and design of the module are described in detail. this is followed by an overview 
of NLP and a comparative study of NLP tools. Development details are given, followed by 
configuration, deployment, testing and validation details. 

Section 5 presents a summary of the integration approach followed in the interim version of 
the PDA and RMM modules, as well as the roadmap for the final version. 

Section 6 provides an innovation summary, within the scope of technologies addressed in this 
document. 

Section 7 provides the main conclusions and identifies the next steps for the development and 
integration of the PoSeID-on platform. 

 

2. PoSeID-on Requirements and Architecture 
Overview 

 
This section describes the PoSeID-on system architecture from a high-level point of view, 
introducing the core components and actors of the platform. A thorough and in-depth 
description of the architecture and architectural decision can be found in deliverable D2.2 [1] 
of the project. The objective of this section is to provide background and contextualize the 
descriptions of the Personal Data Analyser and the Risk Management Module interim 
implementation provided in subsequent sections, and, as such, only an overview of the 
PoSeID-on architecture and main modules will be given. 
PoSeID-on aims to provide a Privacy Enhancing Dashboard for personal data protection, a 
platform that manages the personal data transactions between data subjects and private or 
public entities processing or storing their data. PoSeID-on also aims to manage direct 
transactions of PII between data processors, with the consent of data subjects. 
All relevant information concerning the data subject and his/her personal information shall be 
made available through a user-friendly and accessible web dashboard. In addition to providing 
tracking of PII exchanges and consent management, PoSeID-on will also provide the data 
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subjects with a risk score or reputation associated with the data processors making use of 
their PII. In order to reduce identity fraud and protect the privacy of users, access to the 
PoSeID-on Dashboard is to be made available through eID accounts only, in line with the 
eIDAS regulation. In this context, the RMM module aims to analyse the PoSeID-on platform’s 
behaviour in order to detect possible privacy risks and system problems, while the PDA 
module aims to analyse the actual content of PII transactions in order to detect personal data 
which is not covered by the permissions given to data processors. 

2.1. Overall Architecture 
PoSeID-on envisages a solution leveraging permissioned blockchain technologies and smart 
contracts. Through the use of smart contracts, data confidentiality, access control and 
transparency of operations will be guaranteed. Data controllers and data processors will only 
be able to access PII when consent is given by data subjects. The following figure illustrates 
PoSeID-on’s general architecture, including its main components and their interactions.  
 

 
Figure 1 - PoSeID-on General Architecture 

As can be seen, both the Risk Management Module and the Personal Data Analyser 
communicate with other platform components through the message bus and the blockchain 
API. Details regarding these interfaces and the information being exchanged between 
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components can be found in deliverable D2.2 [1], and in Sections 3 and 4 of the current 
deliverable for the Risk Management Module and Personal Data Analyser, respectively. 
 

2.2. Main Modules 
This sub-section presents an overview of the main modules of the PoSeID-on platform. For a 
detailed description of the modules, each deliverable associated with the development work 
packages of each module can be consulted. As described in D2.2, the main modules are the 
web dashboard, data processor API, client-side data processor API, permissioned blockchain 
and smart contracts, blockchain API, risk management module, personal data analyser, eID 
provider, data subject’s PII repository, and message bus. These are described below.  

2.2.1. Data Subjects, Data Processors and Administrators 
PoSeID-on considers three different types of actors: 

• Data subjects are natural persons that represent the primary target of GDPR. Data 
subjects have Personally Identifiable Information (PII) that constitute valuable 
resources for third-parties and represent a privacy risk. Nevertheless, in several situations 
data subjects need to share this PII with third parties (such as insurance companies, health 
institutions, tax services, other public services, banks and so forth), either directly (data 
subject provides the PII) or indirectly (a third party which already has some PII shares this 
PII with another third party, after permission is given by the data subject – this is the case, 
for instance, of a tax service getting revenue reports directly from a bank).  

• Third parties exchanging PII with the data subject or between themselves are designated 
as data processors. Depending on the granted permissions and on the nature of 
exchanged PII, several models of exchange may occur. For instance: the data subject 
provides PII to a data processor for a single operation limited in time and scope; the data 
subject provides PII to a data processor for multiple operations (of a predefined type) but 
with a limit in time; the data subject provides PII to a data processor for an unlimited period 
of time. Depending on the nature of the permissions granted by the data subject, data 
processors may store PII and share this PII with other data processors (within the limits 
established by the permissions). The PII storage mechanisms actually employed by each 
data processor fall outside the scope of PoSeID-on. However, the data processor is 
supposed to comply with data subject’s requests and permissions regarding retention, 
deletion, and processing of their PII, due to regulatory and legal obligations. 

• The Administrators are the operators managing the PoSeID-on platform. The platform is 
operated by a preassigned entity – typically a public or semi-public organization with the 
mission of providing a PII management framework such as PoSeID-on. While this entity is 
usually considered as a trusted third-party, the whole platform design tries to minimize the 
risk of intentional or accidental breaches of privacy originating on the management entity. 
Administrators manage the PoSeID-on platform on behalf of this entity. 

2.2.2. Web Dashboard 
The interface provided to data subjects, to access the PoSeID-on platform, is a web-based 
application that provides access to the various types of operations performed by data subjects, 
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such as, for instance, granting, modifying and revoking permissions for a specific data 
processor, checking the history of exchanges of their PII, and receiving alarms due to high 
privacy exposure risks. This human-oriented dashboard is the primary interface for data 
subjects, although in some situations other communication channels may be used according 
to the data subject preferences (e.g., receiving urgent alarms of privacy exposure via email or 
SMS). Access to the web-based dashboard is based on logging with the data subject’s 
national eID (or similar credentials, depending on the specific PoSeID-on instance). 

The web dashboard also provides an interface for PoSeID-on administrators, although with a 
different set of functionalities and user interfaces.  

2.2.3. Data Processor API  
The access point for Data Processors, for communicating with PoSeID-on, is the Data 
Processor API. While the interface for data subjects and administrators (the dashboard) is 
primarily human-oriented, the interface for Data Processors is focused on interconnecting the 
Data Processor’s already existing information systems with PoSeID-on (so that their business 
logic can integrate with PoSeID-on functionalities). This application will publish an 
authenticated API over which Data Processors can send requests for/about PII to PoSeID-on. 
This application will also send the Data Processor messages through their Client-Side Data 
Processor API, about changes in PII values and PII deletion requests. 
 
Note: Prior to D2.2 completion, this module was referred to in documents as Gateway API. 
After several discussions, it was agreed that the name was misleading in what concerns the 
functionalities it provides and, as such, was renamed Data Processor API. 

2.2.4. Client-side Data Processor API 
In order to connect to the PoSeID-on platform, data processors can use a client-side Data 
Processor API, which is made available by Data Processors to interface with their PII store. 
This API manages the transport of PII and the revocation of permissions. The API will need to 
be well secured and authenticated.  

PoSeID-on itself will also develop one Client-side Data Processor API, to manage 
communication with the Data Processor API which will be implemented for the PoSeID-on 
platform to store PII that has no central authority otherwise (PII like personal phone numbers, 
for example). From the rest of the system’s point of view, this is just another Data Processor. 
This PoSeID-on local Data Processor can also act as a reference implementation for the Data 
Processor API specification. 

Note: Prior to the D2.2, in some early documents, this module was referred to as the “Data 
Processor API”. As a result of the discussion of the renaming of the Gateway API, that led to 
it being renamed Data Processor API, the previous Data Processor API was renamed Client-
side Data Processor API. 

2.2.5. Permissioned Blockchain and Smart Contracts 
The PoSeID-on permissioned blockchain consists of a special-purpose blockchain 
implementation that only works within the PoSeID-on system. It will be permissioned, meaning 
that instead of a proof-of-work or proof-of-stake consensus, a central authority will provide the 
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permission to participate in the PoSeID-on Blockchain network. This will cause faster 
transaction speeds and will protect the implementation from the risks public blockchains are 
facing. The functionality of the system will be controlled by Smart Contracts stored within this 
blockchain, and they will describe the management of the requests and permissions to grant, 
deny and check PII access. The blockchain nodes are expected to be hosted by the PoSeID-
on administration entity and the participating data processors. It is also possible to allow the 
inclusion of nodes hosted by other entities – which might make sense in some scenarios. 

2.2.6. Blockchain API 
The blockchain API abstracts all Blockchain operations into a high-level API suitable for 
integration into other applications. Since the use of Blockchain carries some important 
implications on how the clients and the servers behave, actions like account management 
(Data Processor and Data Subject identity on the Blockchain) or system functionality (Smart 
Contract functions usage) change drastically. For instance, users shall locally sign every call 
to a Smart Contract, but other components in the overall PoSeID-on architecture, like the Web 
Dashboard Module might function normally despite the existence of a Blockchain network 
behind it. Modules writing information to the Blockchain ledger must have a mechanism to 
access the network and work against it. This nexus will be the Blockchain API, that will also 
allow the intervening modules to feed the Risk Management and Data Process Analytics 
Module. 

The Blockchain API is not a web-service, but it will be directly used as a wrapper from the 
client browser, without intermediaries, providing a direct connection to the Blockchain Module. 
This API will only be accessible once the user has been authenticated by the eID Provider 
Module (implementing eIDAS). 

2.2.7. Risk Management Module 
The risk management module (RMM) is responsible for monitoring PoSeID-on, both from a 
system-wide perspective and from the point of view of individual data subjects’ operations. 

RMM is expected to detect and evaluate possible security and privacy risks (such as 
anomalous behaviour from a specific data processor which suddenly begins collecting much 
more data than usual from a large set of data subjects, which means the data processor may 
have been hacked and is being used to syphon PII to external attackers) or risks associated 
with a specific data subject (such as successive attempts to login with his/her credentials). 
Risk detection is made combining machine learning algorithms, that analyse multiple sources 
of information about transactions, user-level behaviour and system-level behaviour. When the 
data subject provides explicit consent, specific data transactions and PII might also be used 
for this analysis. High-risk levels may trigger alerts to PoSeID-on administrators and Data 
Subjects, depending on the RMM settings. 

2.2.8. Personal Data Analyser 
The Personal Data Analyser (PDA) will be used to monitor personal data transactions and 
related warnings generated by the blockchain platform, in order to detect and prevent 
anomalies and misbehaved transactions. A warning is generated each time a transaction is 
not received and approved by all the interested parties.  
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This component is used to control personal data in a transaction, with the aim of discovering 
all previously non-identified personal data, such as personal data for which there is no data 
subject authorisation. Due to the sensitive nature of the analysed data (i.e., Personally 
Identifiable Information), the PDA only acts when explicit consent is provided by the user. 
Furthermore, all data is discarded after each analysis. In case the user does not provide 
explicit consent, the PDA will simply not operate for data from that specific data subject. While 
this scenario is not the most desirable, it does not affect other data subjects. 

2.2.9. eID Provider 
An identity provider which, in line with the European eIDAS regulations and ecosystem1, 
authenticates persons and organisations on behalf of the PoSeID-on platform. 

2.2.10. Data Subject’s PII Repository  
Data Processors may receive PII directly from the data subject or from (allowed) transactions 
with other data processors. In the first case, it is important to provide an easy-to-use 
mechanism for the data subjects to insert, store and update this PII. While this functionality 
could be provided by the Dashboard, this would represent a mix of roles that would allow the 
PoSeID-on administrator to potentially bypass existing privacy restrictions (besides adding 
unnecessary complexity to the dashboard). Therefore, it is considered that the Data Subject 
always uses a Data Processor for storing his/her PII, even when this data processor has no 
other specific purpose (in practice it acts as just a storage point for the data subject’s PII). This 
component will be responsible for storing all the PII considered private to a Data Subject for 
which no authoritative Data Processor exists. It will interface with the rest of the PoSeID-on 
system by using the same Data Processor API as all other Data Processors. The only 
difference is that this component acts as a Data Processor with the Data Subject’s credentials. 
All data stored within this component is encrypted with the Data Subject’s public key, instead 
of a Data Processor-specific key.  

Depending on deployment options, storage itself may take place: 

• on-premises with the rest of the PoSeID-on components, though due to the adopted 
encryption mechanisms the PoSeID-on authority actually has no access to the data 
subject’s PII – therefore meeting the privacy requirements previously discussed (whenever 
the same authority manages the PoSeID-on platform and this data subjects PII repository, 
as will happen in the planned pilots) 

• or in the infrastructure of third-party entities, when this service is (hypothetically) provided 
by third parties selected by the data subject. The adopted encryption mechanisms still 
prevent unauthorized access to the data subject’s PII in this case. Also, it should be noted 
that this deployment model is supported by the conceptual architecture but will not be 
tested and/or adopted by any of the planned PoSeID-on pilots. 

A side-benefit of this approach is the fact that, in this way, an example of Data Processor will 
be developed and made available to the (real) data processors participating in the Pilots, as a 
showcase of how to use the Data Processor API to access PoSeID-on services. Data 
processors can then use this example as a starting point to interconnect their own information 
systems with PoSeID-on. 

 
1 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eID 
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2.2.11. Message Bus 
This component provides a messaging infrastructure for PoSeID-on components to 
communicate with each other in a controlled but decoupled fashion, which will allow for the 
easy addition and removal of components without affecting the overall system operations and 
asynchronous communication, facilitating scalability and fault tolerance.  

The different components of PoSeID-on can be seen as individual applications. Messages are 
passed between them, through a queue mechanism, each and every one signed by the sender 
and encrypted for the recipient. When a component is unreachable (for instance, a Data 
Processor is offline), the message will be kept until either a predefined timeout (e.g., two 
weeks) passes or the recipient comes back online.  

In this way, PoSeID-on can stay easy to reason about, easy to test, easy to develop and 
maintain by many distributed parties, and easy to scale up when the need arises. 

 

2.3. Development Roadmap 
Before deliverable D.2.2 - “System Requirements and Architecture”, an overall roadmap for 
the tasks of each Work Package was agreed upon. As the activities started, and with a 
complete system architecture available from D2.2, a more fine-grained roadmap was deemed 
necessary for the sake of good planning and execution of tasks. Therefore, several milestones 
were set for each WP4-related task (T4.2 and T4.3). Below, we provide the details of the 
milestones defined for each task.  

 

 
Figure 2 - Roadmap for T4.2 and T4.3 

 
Figure 2 lists the roadmap for Tasks 4.2 and 4.3. The exploratory studies and detailed module 
design are completed for RMM and PDA. Moreover, implementation is proceeding according 
to schedule and heading towards the final version of the implementation, which is due on April 
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30th, 2020. It is worth mentioning that task T4.1 is not discussed in this document since it has 
its own deliverable, namely Deliverable D4.1 [3]. 
 

Date (July) Description 

8th-9th  Internal revision 
10th-11th  GA Discussion  
15th - 19th  Document Revision (ACN + TCN) 
22nd - 26th  Accommodate review feedback or changes 
29th  Final document verification 
30th  Submission 

Table 1 - D4.3 Revision and Submission Roadmap  

Table 1 lists the deadlines that were internally agreed and set for a seamless finalisation of 
D4.3. 
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3. Risk Management Module 
 
This section details the Risk Management Module.  As previously mentioned, a description of 
the RMM functionality (without implementation details) can be found in deliverable D2.2 [1] 
which presents the overall architecture and requirements of the PoSeID-on platform. 
This section starts by providing an overview of the module goals and an identification of 
requirements. Subsequent subsections present and discuss the used methodology, module 
architecture and design, risk detection approach, module development, preliminary results, 
configuration and deployment, and unit testing and validation.    

3.1. Module overview and goals 
The Risk Management Module is responsible for monitoring PoSeID-on, both from a system-
wide perspective and from the point of view of operations involving individual data subjects. 
The RMM is expected to detect and evaluate possible security and privacy risks inherent to 
the processing of personal data, such as the exposure of PII through the malicious use of the 
PoSeID-on platform. An example of such risk is a data processor which suddenly begins 
collecting much more data than usual, requesting permission to access several types of PII 
from a large number of data subjects, while normally such data processor would collect 
information regarding one or two PII types from a small set of data subjects. This can indicate 
a data processor is syphoning information or has been compromised. 
Besides detection of possible risks, the RMM must also associate a risk score to data 
processors, evaluating them according to their previous behaviour on the platform. This allows 
the dashboard to advise which services can be trusted or should be disabled. 
In addition, the RMM must notify the administrators of PoSeID-on and the data subjects 
involved in possible privacy risks, in order for them to take the necessary counter-measures, 
such as disabling services, when risk is identified. 
In order to do this, RMM resorts to machine learning and well-known frameworks for real-time 
analysis of the data provided by PoSeID-on to the module.  
As of the time of writing, the agreed-upon sources of information are system logs, provided by 
each module within the platform and, when data subjects provide explicit consent, PII 
transactions and management operations metadata which is not included in logs for security 
and privacy reasons. 

3.2. Requirements 
 
The identified requirements for the risk management module can be seen in Table 2. These 
requirements were taken from the PoSeID-on system requirements delivered as annex on 
deliverable D2.2 and their identification numbers correspond to the ones on that deliverable, 
for the sake of consistency between documents. 
 
Requirement 
ID 

Title Description 

R102 RMM Data 
Sources 

RMM will receive information from the blockchain through 
the blockchain API and information from the API Gateway 
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R103 RMM Risk 
Detection 

RMM will detect risk events based on blockchain 
transactions and previous stored risk events information 

R104 RMM Risk 
Events The RMM will create, update and delete PII risk events 

R105 RMM 
Notifications 

Depending on the nature of risk events notifications will be 
delivered to involved data processors, data subjects and 
PoSeID-on platform administrators 

R106 RMM PII in 
Risk Events 

Risk Events may include PII in case of explicit consent by 
the data subjects and data processors to the RMM 

R107 
RMM Risk 
Event 
Storage 

Risk events will be logged in a secure way for later 
analysis, forensics and processing 

R108 
RMM Data 
Processor 
Reputation 

RMM will associate a reputation score with each data 
processor based on previous track record 

R109 RMM DP 
Reputation 

Reputation scores will be created, updated and deleted by 
the RMM 

R110 
RMM Risk 
Notification 
Delivery 

RMM will notify identified parties in a risk event through the 
web dashboard or other channels specified for this purpose 

R111 RMM Risk 
Prediction 

Risk Management Module will predict risks based on 
reputation, PII transactions and system logs 

Table 2 - Risk Management Module Requirements 

In addition to these requirements, the following quality attributes were also identified: 
 
Performance 
 
The RMM is expected to output real-time results. By real-time, it is understood as within the 
length of a user session on the web dashboard. The results do not need to be instantly made 
available, as the user will not be waiting for the feedback and may return to other dashboard 
activities, but results of user actions which have been identified as a risk should arrive within 
the active session. 
 
Scalability 
 
The potential volume of data subjects managed by PoSeID-on is in the order of millions, as 
explained in the Italian Ministry of Economy and Finance’s use case presented in deliverable 
D2.1 [4]. As such, the module should be built using technologies that can scale horizontally to 
this magnitude of users. 
 
Availability 
 
A system of this nature, focused on ensuring the privacy of data subjects, must be able to 
process all requests within a user session and also provide fault tolerance and graceful 
degradation. Multiple deployments of the module should be possible, either by working in 
parallel or processing data in a distributed manner. 
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Privacy and Security 
 
The RMM will be dealing with PII if consent is given by data subjects. Although the RMM does 
not process PII provided to the PoSeID-on system or associated data processors by data 
subjects, it processes and stores metadata regarding PII exchanges and system 
operations, such as reputation about the entities involved in an exchange and the type of data 
being exchanged. As such, it should comply with the GDPR and provide the same assurances 
as data controllers. This means that if PII is stored it should be encrypted at rest, 
communications with other modules should be done through secure and authenticated 
channels, and revocation of data access should be possible. 
 
 

3.3. Methodology 
 
In order to define an approach to accomplish the goals set for the module, several points had 
to be taken into consideration.  
First, RMM results must be accurate and made available in near-real-time. Secondly, as risk 
management in this context is quite novel and we are developing a new system, there are 
currently no labelled or unlabelled datasets which can be utilized to model the behaviour of a 
PII management and distribution system. Without training data, the immediate solution was to 
select mechanisms which were able to model the behaviour of the system without previous 
knowledge. 
Furthermore, the RMM should also be able to adapt to changes as long as they reflect the 
normal behaviour of the system, as any new platform is expected to see a growth in usage 
with time and adoption. Also, with the increase in visibility and growth, the number of potentially 
malicious attacks or usage is also expected to grow, so the detection mechanisms should be 
able to account for new kinds of attacks or malicious patterns of usage. 
Last but not least, the sources of data and the volume of data being sent to and processed by 
the RMM pose a limit to the approaches that can be taken, especially when considering the 
near-real-time operation requirement. 
With these points in mind, we concluded that developing a module focused on the detection 
of anomalies in the patterns of data generated by the PoSeID-on system was the best 
approach to take. Using a continuous unsupervised learning approach addresses the 
concerns expressed above. Moreover, by combining stream-based anomaly detection and 
batch analysis of the data, it is possible to increase the accuracy of the risk predictions while 
allowing analysis reports in near-real-time. 
In the following sections, the architecture designed and implemented to accommodate the risk 
detection approach selected is explained, followed by the description of the anomaly detection 
mechanisms implemented. 
 
 

3.4. Detailed Architecture and Design 
 
As previously explained, the Risk Management Module will evaluate and manage privacy and 
operational risks within the PoSeID-on system, through analysis of operational logs and PII 
exchanges. The result of this analysis will be an identification of data processors and data 
subjects who are involved in an anomalous pattern of logs, resulting in possible updates to 
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the risk score rating of each involved Data Processor and a warning to each Data Subject, 
advising which services should be disabled for better privacy. In order to allow for efficient 
analysis of logs and dispatch of results, the architecture of the RMM (Figure 3) is based on 
the proposal by Nathan Marz for a generic and scalable data processing architecture, which 
he called Lambda Architecture [5]. As shown in the literature [6] [7] [8], adopting the Lambda 
Architecture for event processing allows for an efficient processing of large volumes of 
information, consistent with the amounts expected to be generated by the PoSeID-on platform. 
Moreover, it allows the analysis of data in near-real-time, providing data subjects near-instant 
feedback regarding exposure risk, while also allowing the analysis and extraction of valuable 
insights from large volumes of data, collected over time, through more complex or time and 
resource-intensive methods. 
 

 
Figure 3 - Risk Management Module Architecture 
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This architecture is divided into three layers: a batch layer, a speed layer, and a serving layer. 
Messages arriving at the RMM are pre-processed into structured parameter lists and then sent 
to both the batch and the speed layers. 
The batch layer manages a master dataset which is used for historic risk analysis, taking 
advantage of having a large collection of data, whose time span will depend on how long the 
RMM is allowed to retain data, provided the data subject has given explicit consent for this 
purpose. This historic risk analysis takes significant time and is not expected to work in near 
real-time. Instead, this layer provides warnings in case of risk detection in an "offline" manner. 
Having a batch layer also provides the advantage of being able to use machine learning 
models which do not have a stream-based counterpart. This layer is also in charge of training 
and updating machine learning models for use in near real-time analysis by the speed layer, 
for algorithms that require an offline training step, as is the case with most supervised learning 
algorithms.  
The speed layer deploys the models created by the batch layer, in addition to the clustering 
models, and analyses the stream of data in real-time, using the data that arrives between 
batch analysis instances. This layer reasons over the data and, in case an anomaly is 
detected, dispatches a recommendation action request to the serving layer.  
The serving layer is in charge of receiving the results from both the batch and speed layers, 
and of notifying the respective entities about risk exposure through the Dashboards interface. 
It is also in charge of receiving feedback from administrators regarding such risk notifications, 
by providing the identification of the log window where the anomaly was identified, and 
allowing them to confirm or deny that a real risk is present within it. According to the 
administrator’s feedback and the history of anomalous logs involving each data processor, the 
associated risk reputation of data processors is also updated. 
Additional architectural information, such as the details regarding each component of the 
module, can be found in deliverable D2.2. 
 

3.5. Risk Detection in PoSeID-on 
 
In the scope of the PoSeID-on project, the taken risk detection approach is a combination of 
domain specific feature extraction and the generic well-known approach for log analysis 
anomaly detection [9] [10] [11].  
In short, information regarding PII handling operations and logs collected from each 
component operating within PoSeID-on are sent to the Risk Management Module as free form 
text plus a set of parameters, included in the “params” field of the message protocol defined 
in D5.1. 
As messages arrive and are collected within the RMM, a model is created, representing the 
normal behaviour of the system (or normal pattern of PII operations and logs). Successive 
messages arriving at the Risk Management Module are grouped into sequences and analysed 
in order to understand if the sequence under analysis falls into the regular pattern expected 
for system behaviour or not.  If it does, the expected behaviour is updated by calculating a 
new model based on the old model and new values. If not, the sequence is considered an 
anomaly and a notification is dispatched to inform about this occurrence. Later on, the 
sequences of events that triggered the anomaly event can be checked by a security analyst 
or system administrator for further action and correction. In the following sections, a more 
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detailed description of the steps involved in anomaly detection based on log mining is given, 
as well as a detailed explanation of the PoSeID-on specific implementation of these steps. 

3.5.1. Message Contents 
Messages arriving at the RMM contain a set of parameters, including some or all of the 
following set of parameters: 
 
Parameter Description 
Module The module issuing the message 
Operation The operation that is being performed, where applicable. Some logs 

may be associated with specific operations, such as PII Permission 
Requests, PII Permission Grants, PII Permission Revocation, PII 
Transacted/Accessed. 

Sender ID The ID of the issuer of a certain operation, where applicable. If it is a 
system operation it can be the ID of the module producing the 
message. If it is a PII related operations it can be a Data Subject ID or 
a Data Processor ID (only sent when consent is given). 

Sender IP The IP originating the message. 
 Receiver ID The ID of the target of a certain operation, where applicable. If it is a 

system operation it can be the ID of the module receiving the request. If 
it is a PII related operations it can be a Data Subject ID or a Data 
Processor ID (only sent when consent is given). 

GELF Log The default fields sent to GELF log manager such as the host, short 
message, full message (raw log) and syslog level. 

Table 3 - Message Parameters 

The operation description parameter allows us to extract a feature vector consisting of the 
count of each operation type instance happening per window of collected messages. The raw 
log from GELF will be used to build a set of log templates which will also be used for log event 
counting per window. The fields identifying the entities involved in a PII operation, such as the 
data processors and data subjects involved, when supplied if consent is given, will be used to 
identify the parts at risk or creating risk, when an anomalous pattern is detected in a message 
window. 

3.5.2. Log Anomaly Detection Overview 
 
In order to build a feature vector to feed the prediction models, we apply the generic framework 
used in log-based anomaly detection, which consists of four main steps [12] : 
 

Log Collection: Systems constantly produce a stream of logs describing system 
states and runtime information. These logs contain a set of parameters depending on 
the used logging framework, and a raw text log message describing the event which 
resulted in the respective log. These logs can be stored for later use or fed directly into 
a stream analyser for real-time anomaly detection. 
 
Log Parsing: Since logs consist of free form text, it is necessary to parse them and 
extract a group of structured event templates. The event templates consist of the most 
common combination of log parts/segments, which define the constant part of a log. 
Once a set of event templates is selected, each log can then be considered an 
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occurrence of one of the selected events, with added specific parameters, meaning 
that constitute the variable part of the log. 
 
Feature Extraction: Once event templates are selected, we can then slice our log 
collection into several sequences of log events, which are then encoded into numerical 
feature vectors, which generally consist of a count of occurrences of a certain event 
within the sequence of log events being analysed. These vectors can then be passed 
as input to machine learning models. There are several ways to slice the logs, such as 
using fixed windows, sliding windows or other types of windows, depending on the 
domain and desired outcome. Fixed and Sliding Windows are based on time and 
timestamps. Each log has an associated timestamp corresponding to the time the log 
was issued. A fixed window is determined by a fixed time span or duration for each 
window. All logs occurring within a predefined duration (e.g., an hour or a day) are 
regarded as a sequence and analysed together. These windows are consecutive, the 
end of one window corresponding to the beginning of the next one. Sliding windows 
are also grouped by time, but in this case, we have also a sliding step, which is typically 
smaller than the window size. This step determines the movement of the window over 
time, as the beginning of a window corresponds to the beginning of the previous one, 
plus the step size or duration. In practice, this means that we can have windows with 
overlapping logs (i.e. if we have a 1-hour window with a 10 minutes step, we will have 
consecutive windows where the only new logs being added on each slide are the logs 
received in those new 10 minutes). Logs occurring within each window are here too 
regarded as a sequence. 

 
Anomaly Detection: The last step consists of feeding the feature vectors created in 
the previous phase into machine learning models for training and construction of a 
model for anomaly prediction. The constructed model can then be used to determine 
if a new incoming log sequence is considered an anomaly or not. 
 

A graphical example of this process can be seen in the following figure. 
 

 
Figure 4 - Graphical example of log anomaly detection [12] 

 

3.5.3. Log Anomaly Detection in PoSeID-on 
The log anomaly detection in the RMM currently has only been implemented in the stream-
layer and, as such, the following section describes the steps taken for that respective layer. 
Batch log anomaly detection will follow a similar structure, with the difference that the batch 
layer allows for more flexibility when performing feature extraction, by converting the incoming 
data to a vectorized format that anomaly detection libraries accept. 
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Log collection 
 
Logs in PoSeID-on are delivered through the message bus directly to the Risk Management 
Module, using the established message protocol that, in turn, uses Protobuf [13] for the 
message format and Libsodium for encryption [14]. Since a message will be sent for each log 
using this message protocol, we can not only send a raw description of the log but also an 
extra set of parameters that can be useful for analysis. These parameters include the default 
parameters of Graylog Extended Log Format (GELF) [15], and any extra parameter which is 
also added to be stored in Graylog for later auditing. Extra fields can be sent to the RMM, 
which can enrich the analysis, such as PII regarding the data subjects and data processors 
involved in the operations logged using this message format, while keeping this information 
out of the general log storage, thus accounting for privacy issues. It is also important to keep 
in mind that the RMM collection of this extra PII is optional and subject to consent. 
 
Log parsing 
 
Log parsing, being the first step of the log anomaly detection pipeline, has an important impact 
on the result of the analysis. The quality of the structuring of the raw logs and the creation of 
the event templates directly affects the event count vectors which are fed to the anomaly 
detection algorithms, such as K-means or Principal Component Analysis. Moreover, good log 
parsing enables efficient search, filtering and grouping of logs. 
Current solutions for automated log parsing have built-in parsing support for common log 
structures, such as Apache and Nginx logs. Since the PoSeID-on platform will have a 
collection of logs being generated by several third-party frameworks and tools, and also 
custom-built software, with unique logs, there is the necessity of manually configuring custom 
parsing with regex scripts, grok patterns or a parsing wizard. This does not scale particularly 
well and an automated solution is much more flexible. Also, since PoSeID-on is a novel 
platform working in a novel domain, adaptability to change is a must. As such, there was the 
need for analysing the current automated log parsing solutions in order to apply one to the 
Risk Management Module log parsing step. 
Michael Lyu et al. have done an in-depth research [16] on 13 representative log parsers 
proposed in the literature, and have compiled their results as seen on the following table: 
 

 
Table 4 - Summary of Automated Log Parsing Tools [16] 

From this list, we are interested in the following key characteristics: 
 

• Mode: Log parsers can be categorized into two main modes, offline and online. 
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Offline log parsers are a type of batch processing and require all log data to be 
available before parsing. On the other hand, Online log parsers allow processing of 
log messages one by one, as they arrive at the module, in a streaming manner. As 
such, online parsers are what we are looking for. 
 

• Efficiency: This characteristic is of the utmost importance, considering the potentially 
large volume of logs being generated per second. As all of the subsequent analysis 
tasks depend on log parsing, it is necessary that the parser is efficient in order to 
perform real-time anomaly detection. As such, High efficiency is the value we should 
focus on. 
 

• Coverage: Indicates the capability of a log parser to successfully parse all input log 
messages. If a checkmark is present, then the log parser is able to handle not only 
frequent patterns but also rare events, which is not always the case with log parsers. 
Ignoring rare events might result in missing important events, which are 
consequentially missed on the anomaly detection. 
 

• Open-source: The availability of the source-code makes it much easier to adopt the 
parser, reusing it or even extending its implementation. As such, we only look for 
parsers available as open-source. 

 
Considering online and highly efficient automated log parsing tools only, we have SHISO 
[17], Spell [18] and Drain [19]. Among these three, all offer optimal coverage but only Drain 
is open source. Coincidentally, Drain also achieves the best overall accuracy, has also been 
successfully implemented in a production system in collaboration with Huawei, and has been 
extended with Spark [20] for parallelization, exploiting Drain’s data partitioning. This makes 
Drain an optimal candidate for log parsing in RMM. Drain log parsing approach uses a fixed 
depth parsing tree, which encodes specially designed rules for parsing. As input, Drain 
receives a batch of raw text logs and a simple description of the raw text formats, given during 
configuration, in order to extract components (i.e. the following string: “<Date> <Time> <Pid> 
<Level> <Component>: <Content>”). Optionally regular expressions can also be given in order 
to remove well-known parameters from the raw text, such as numbers, IP addresses or 
session ID’s. For more details regarding the Drain Log Parser algorithm, the original paper 
can be consulted [19]. 
As Drain is only available in python, a java implementation of the algorithm was developed in 
order to facilitate the integration with the Risk Management Module pipeline and data analysis 
frameworks of Apache Spark. This implementation was also further extended in order to work 
with the Spark Streaming pipeline, in order to maintain log template consistency across 
batches.  
The output of this log parsing step are the raw logs parsed into a dataset of structured fields, 
with an extra field for parameters. In addition, the list of log templates can also be extracted 
from the tree, as well as the ID’s of the logs that fall into that log template. 
 
Feature Extraction 
 
Feature extraction in the RMM consists of taking the output of the parsing step, the event 
templates extracted from the parsing tree, and the logs associated with that template, and 
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creating a normalized vector corresponding to the count of occurrences of each template 
within that window. In addition to this, the count of each type of PII operation occurring in that 
window is also added to the vector and normalized.  
For windowing, the current implementation of the stream layer has a fixed window of 5 secs, 
corresponding to the interval during which messages are fetched from the message bus. This 
is just for testing purposes, as such short windows usually do not offer enough insight into the 
system behaviour. We foresee the use of hourly sliding windows with a step of 3 to 5 minutes 
in order to be able to output results within a user session, or real-time. For the batch layer, 
options for window size and type are still under study. For both the stream and batch layers, 
the possibility of windowing by data processor is being considered in order to model data 
processor behaviour. Tuning and testing of these values are to be done for the final version of 
the RMM.  
The current state of implementation does not yet allow for evaluating the feature extraction 
step, as the last steps of the pipeline, model training and anomaly detection, have not been 
implemented yet. Separation of the log occurrences from the PII operations count is also a 
possibility, creating two separate pipelines with different concerns, namely PII operation 
focused on anomaly detection and system logs anomaly detection. Whether separation of 
concerns will improve or not results will have to be evaluated, as well as normalization 
techniques. 
 
Anomaly Detection 
 
The anomaly detection step of the pipeline is currently under implementation, and MLlib [21] 
streaming K-means will be used for stream analysis. Models will be re-trained every hour 
based on the received logs. As well as for the batch layer, models will be generated before 
each batch analysis, for which daily runs are the first testing choice. 

3.5.4. Data flow 
The following figure demonstrates the flow of data, or log messages, within the module, to 
better understand the implementation and the anomaly detection pipeline. 
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Figure 5 - RMM Data Flow 
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The service layer receives the results of the anomaly predictors, namely the anomalous 
sequences of logs and the involved data processors and data subject ID’s, and stores them. 
The current version of the RMM does not yet receive and use these results, but they will be 
used to notify the involved parties of possible risks and to update data processors reputation. 

3.5.5. Datasets 
One of the challenges of the Risk Management Module is that there is no public dataset which 
focuses on the domain area of PoSeID-on that is, i.e. PII management. As such, we cannot 
test the anomaly detection approach with 100% certainty that it will work for detecting privacy 
risks until a real dataset is created and manually labelled (manually analysed and labelled on 
whether a sequence of logs corresponds to a PII privacy risk). Nevertheless, the log anomaly 
detection approach is quite generic, so it is possible to test for anomaly detection using labelled 
datasets, which present a similar structure to the ones that will be available in PoSeID-on. We 
have collected from the technical partners’ examples of messages structures and log 
structures for the main PII operations for this purpose. For more specific feature extraction, 
such as counting the number of PII specific operations per window, the generation of a dataset 
with this type of parameters will have to be done or if possible, logs available after integration 
of the interim version modules will be used for testing. 
 
Currently, the datasets available for testing are few but the LogPAI research group [22] has 
made available a collection of datasets from which some are labelled. One of them presents 
a similar structure to the one which will be used in PoSeID-on logs, namely: 
 

● HDFS [23] 
○ Hadoop Distributed File System log set is generated in a private cloud 

environment using benchmark workloads, and manually labelled through 
handcrafted rules to identify the anomalies. The logs are sliced into 
traces according to block ids. Then each trace associated with a specific 
block id is assigned a ground-truth label: normal/anomaly 

● Time Span: 38.7 Hours 
● Number of Messages: 11,175,629 

 
3.6. Development 

 
This section presents the frameworks and dependencies of the Risk Management Module, 
followed by the description of each implemented Java class, as well as foreseen but still to be 
implemented classes. 
 

3.6.1. Dependencies and Used Frameworks  
 
Dependencies and frameworks descriptions are organized by type, following the POM 
configuration file structure: first the plugins, afterwards the repositories, and afterwards 
libraries. Most of these dependencies are available in the general Maven repositories or 
custom repositories, that can be configured and imported directly using the POM of the RMM 
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Maven Project. The exceptions to this are the C implementation of Libsodium and the Spark-
RabbitMQ connector, which will be detailed in the following subsections. 
 

3.6.1.1. Plugins 

Maven Compiler  
Used to compile the sources of the project. The Java version used in the Risk Management 
Module must be Java 8, as the Apache Spark libraries do not support newer versions of Java 
yet. 
 

 
 

Maven Assembly  
Used to create the uber-jar containing the RMM application and all necessary dependencies. 

 
3.6.1.2. Repositories 

Lazysodium Java Repository 
Necessary for importing the Lazysodium library. 

 
3.6.1.3. Libraries 

Unit Testing 
Both dependencies refer to Junit necessary libraries for unit testing. 
 

<plugin> 
    <groupId>org.apache.maven.plugins</groupId> 
    <artifactId>maven-compiler-plugin</artifactId> 
    <configuration> 
        <source>8</source> 
        <target>8</target> 
    </configuration> 
    <version>3.8.0</version> 
</plugin> 

 

<plugin> 
    <artifactId>maven-assembly-plugin</artifactId> 
    <configuration> 
        <archive> 
            <manifest> 
                <mainClass>eu.poseidon_h2020.rmm.RiskManagementModule</mainClass> 
            </manifest> 
        </archive> 
        <descriptorRefs> 
            <descriptorRef>jar-with-dependencies</descriptorRef> 
        </descriptorRefs> 
    </configuration> 
    <executions> 
        <execution> 
            <id>make-assembly</id> <!-- this is used for inheritance merges --> 
            <phase>package</phase> <!-- bind to the packaging phase --> 
            <goals> 
                <goal>single</goal> 
            </goals> 
        </execution> 
    </executions> 
</plugin> 

 

<repository> 
    <id>lazysodium-java</id> 
    <url>https://dl.bintray.com/terl/lazysodium-maven</url> 
</repository> 
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JUnit Jupiter Engine 

 
 

Junit Jupiter API 

 

Logging 
All libraries under this section are used for logging purposes. The framework used for logging 
is Log4J2, and both Core and API dependencies are necessary for the framework to function. 
  
 Log4J2 Core 

 
 
 Log4J2 API 

 
 
 LogStash GELF 
LogStash GELF is an appender for connecting the logger framework to the Graylog log 
manager, the PoSeID-on choice for log storage and management purposes. 
 

 

Messaging 
The message protocol used in PoSeID-on makes use of the serialization mechanisms of 
Google Protobuf and is described using the associated .proto files. Currently, the .proto files 
are included in the resources folder of the project, but this will be changed to be imported 
directly from the PoSeID-on message protocol repository for consistency between modules. 
 
 
 
 

<dependency> 
    <groupId>org.junit.jupiter</groupId> 
    <artifactId>junit-jupiter-engine</artifactId> 
    <version>5.4.2</version> 
    <scope>test</scope> 
</dependency> 

 

<dependency> 
    <groupId>org.junit.jupiter</groupId> 
    <artifactId>junit-jupiter-api</artifactId> 
    <version>5.4.2</version> 
    <scope>test</scope> 
</dependency> 

 

<dependency> 
    <groupId>org.apache.logging.log4j</groupId> 
    <artifactId>log4j-core</artifactId> 
    <version>2.11.2</version> 
</dependency> 

 

<dependency> 
    <groupId>org.apache.logging.log4j</groupId> 
    <artifactId>log4j-api</artifactId> 
    <version>2.11.2</version> 
</dependency> 

 

<dependency> 
    <groupId>biz.paluch.logging</groupId> 
    <artifactId>logstash-gelf</artifactId> 
    <version>1.13.0</version> 
</dependency> 
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 Google Protobuf 

 
 
Lazysodium is a complete Java (JNA) wrapper over the Libsodium library that provides 
developers with a smooth and effortless cryptography experience. It is used to perform 
cryptographic operations on the PoSeID-on messages. 
 
 Lazysodium Java 

 
 

Libsodium (Added as a resource) 
Cryptographic library included as a resource which is used by the Lazysodium Java wrapper 
for Libsodium. 
 
 RabbitMQ AMQP Client 
Dependency necessary to connect and operate with the RabbitMQ message bus. The version 
used is quite outdated due to the fact that the Spark Streaming to RabbitMQ connector used 
(and only available public implementation) has not been updated in over two years. More 
details regarding this will be given in the Spark-RabbitMQ connector dependency description. 
 

 

Data Processing 
The following dependencies are necessary for the tasks of message pre-processing, 
processing and anomaly detection. 
 
 Spark SQL 
Spark SQL is Apache Spark's module for working with structured data. 
 

 
 
 Spark Streaming 
 
Spark Streaming brings Apache Spark's language-integrated API to stream processing, letting 
you write streaming jobs the same way you write batch jobs. 
 

<dependency> 
    <groupId>com.google.protobuf</groupId> 
    <artifactId>protobuf-java</artifactId> 
    <version>3.8.0</version> 
</dependency> 

 

<dependency> 
    <groupId>com.goterl.lazycode</groupId> 
    <artifactId>lazysodium-java</artifactId> 
    <version>3.6.0</version> 
</dependency> 

 

<dependency> <!-- necessary for stratio rabbitmq connector--> 
    <groupId>com.rabbitmq</groupId> 
    <artifactId>amqp-client</artifactId> 
    <version>3.3.4</version> 
</dependency> 
 

<dependency> 
    <groupId>org.apache.spark</groupId> 
    <artifactId>spark-sql_2.11</artifactId> 
    <version>2.4.0</version> 
</dependency> 
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 RabbitMQ Spark Streaming Receiver (Locally installed JAR) 
This dependency was a weighted decision. Rabbit MQ Spark Streaming Receiver library is a 
connector between the Spark Streaming framework and the RabbitMQ message bus. This 
library has not been updated in almost two years and is outdated in dependencies, not working 
out of the box with the latest Spark versions. Currently, there are no other implementations. 
The choice was to either create a connector of our own for PoSeID-on or to fork the repository 
containing RabbitMQ Spark Streaming Receiver and try to update enough dependencies for 
it to work without breaking other necessary dependencies for the RMM. 
Since implementing a new connector would take a significant amount of time, we tried to 
update the outdated library, with success. The compromise is having an outdated version of 
RabbitMQ AMQP Client dependency since this library has suffered significant changes in the 
last two years and updating the RabbitMQ Spark Streaming Receiver to accommodate newer 
versions would be of almost equal effort as creating a new connector altogether. Another 
compromise is having to install our custom jar of the receiver into our local maven repository 
in order to import the dependency and compile the RMM. 
 

 
 
 AKKA Actor 
Necessary dependency for the RabbitMQ Streaming Receiver to work. 
 

 
 
 Spark MLlib 
Machine learning library used in the anomaly detection pipeline for its clustering algorithms, 
implemented specifically to work with Spark and Spark Streaming. 
 

 

<dependency> 
    <groupId>org.apache.spark</groupId> 
    <artifactId>spark-streaming_2.11</artifactId> 
    <version>2.4.0</version> 
    <scope>compile</scope> 
</dependency> 

<dependency> 
    <groupId>com.stratio.receiver</groupId> 
    <artifactId>spark-rabbitmq</artifactId> 
    <version>0.6.0-SNAPSHOT</version> 
</dependency> 

 

<dependency> <!-- necessary for stratio rabbitmq connector--> 
    <groupId>com.typesafe.akka</groupId> 
    <artifactId>akka-actor_2.11</artifactId> 
    <version>2.5.3</version> 
</dependency> 

 

<dependency> 
    <groupId>org.apache.spark</groupId> 
    <artifactId>spark-mllib_2.11</artifactId> 
    <version>2.4.0</version> 
    <scope>runtime</scope> 
</dependency> 
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Miscellaneous 
 Project Lombok 
Project Lombok is a java library that automatically plugs into an editor and build tools, which 
allows the reduction of boilerplate code by using annotations instead. 
 

 
  
 

3.6.2. Component Implementation 
 
This section provides a description with the necessary level of detail to better understand the 
actual code and its methods. However, the actual code will not be listed in this section. Instead, 
the code will be available in the PoSeID-on repositories. It should be noted that this 
implementation is an interim version and work is still in progress. Therefore, some modules 
could have incomplete features and performance is not optimal. An overview of each 
implemented class will be given, including the functionalities expected to be implemented in 
current placeholder classes (classes without relevant code). These placeholder classes will 
be identified with “[Placeholder]” after the class name. Most implemented methods names are 
self-explanatory and, as such, only relevant details or steps will be explained in detail. For a 
better understanding of the implementation, it is recommended to take Figure 5 as reference, 
which describes the flow of data and operations in the RMM. Described classes are grouped 
by first level package only, in order to facilitate reading. 

 
3.6.2.1. Base Package 

BaseClass.java 
Base class extended by all other classes, which setups the logging framework. 

SparkClass.java 
Base class extended by classes that leverage the Spark Core and Spark Streaming 
frameworks. It is used simply to reduce redundant code in extending classes.  Stores the spark 
session and streaming context. 
 

3.6.2.2. Batch Layer Package 
 
Currently, all classes in this package are a placeholder, as the implementation of the batch 
layer has not started yet. 

BatchAnalyser.java [Placeholder] 
Will hold the code pertaining to the data processing done in the batch layer. 

<dependency> 
    <groupId>org.projectlombok</groupId> 
    <artifactId>lombok</artifactId> 
    <version>1.18.6</version> 
    <scope>provided</scope> 
</dependency> 
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ModelBuilder.java [Placeholder] 
Will hold the code pertaining to the build of the anomaly detection models. 

MasterStorage.java [Placeholder] 
Will hold the code pertaining to persistent storage management. It will manage connection 
and operations related to received message data storage. 

BatchLayer.java [Placeholder] 
Interface which describes the methods that must be implemented in the Batch Processor. 

BatchProcessor.java [Placeholder] 
Will hold the code pertaining to the logic and interaction of components in the batch layer. 
 

3.6.2.3. Data Ingestion Package 
 
Classes in this package focus on the reception and pre-processing of data received by the 
RMM. 

MessageBroker.java 
Implements the connection between the RMM and the Message Bus. Connection for sending 
messages (used to respond to RPC requests) is implemented in 
createConnectionToMessageBus(). Connection for receiving messages, in a streaming 
manner is set up leveraging the RabbitMQ Spark Streaming Receiver through the setup 
method setSparkStreamingRabbitMQConsumer(). In order to work, this class fetches from 
environment variables the following variables, used to connect to RabbitMQ (names are self-
explanatory): 

 
This class starts by creating a connection for writing to the Message Bus. Then it creates a 
Streaming Receiver which connects to the Message Bus for reading and creates a stream of 
message, usable by the Spark framework. Afterwards, received messages are decrypted and 
formatted into datasets, in order to pass a copy to both the Stream and Batch layers for further 
processing. 
 

3.6.2.4. Drain Package 

Drain.java 
Java implementation of the original Drain algorithm. Leverages Spark SQL in order to perform 
the dataset operations which in the original Python implementation are done using the pandas 
library. For details on the Drain log parsing algorithm, the original paper can be consulted [19]. 

DrainHDFSDemo.java 
Demo class for Drain, using HDFS logs, which implements the necessary configuration steps 
for the Drain algorithm to work. These include setting the input path for the log file, the output 
path, and the file name, as well as the log format and the regular expressions to be used 
during the log parsing. 

private static String QUEUE_NAME,QUEUE_HOST, QUEUE_USERNAME, QUEUE_PASSWORD; 
private static int QUEUE_PORT; 

 



 
  

39 
 

DrainPoseidon.java 
Wrapper class for the DrainStreaming class used in the RMM log parsing step. As the 
DrainHDFSDemo class, it holds the necessary configuration of the Drain algorithm, currently 
hardcoded but that can be implemented as environment variables later in the development. 
It also holds the data structures used to store the parsing tree and the log cluster list in order 
to build the feature vectors which are feed to the clustering algorithms. 

DrainStreaming.java 
Adapted implementation of the Drain algorithm to work with the RMM log analysis pipeline. 
The input to this algorithm is a sequence of log messages in JavaRDD<Row> format, the 
rootNode of the parsing tree, and the log clusters list. The output is a Dataset<Row> of the 
parsed log message sequence. The updated parsing tree and log cluster list are also updated 
with the new results. 

3.6.2.5. Proto Package 
 
Classes in this package are automatically generated by the Protobuf compiler, which must be 
run over the .proto files. For more details on these files, deliverable D5.1 (which focuses on 
the integration aspects of PoSeID-on) can be consulted. 
 

3.6.2.6. Service Layer Package 
 
Currently, all classes in this package are placeholders, as the implementation of the service 
layer of the RMM has not started yet. 

MonitoringModule.java [Placeholder] 
Will hold the code pertaining to the monitoring module, which will provide methods for results 
retrieval and visualization. 

NotificationHandler.java [Placeholder] 
Will hold the code pertaining to the notification of data subjects, data processors and PoSeID-
on administrators, regarding privacy risks or corrections to previous alarms. 

ReputationManager.java [Placeholder] 
Will hold the code pertaining to operations regarding updates and retrievals of Data 
Processor’s reputation. 

ServingStorage.java [Placeholder] 
Will hold the code pertaining to the persistent storage management of the service layer. It will 
manage connection and operations related to the storage of data processor reputation scores 
and anomaly detection results. 

ServiceLayer.java [Placeholder] 
Interface describing the methods that must be implemented by the RiskManager class. 

RiskManager.java [Placeholder] 
Will hold the code pertaining to the logic and interaction between components of the service 
layer. 
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3.6.2.7. Speed Layer Package 

 
This package implements the stream layer of the RMM, which focuses on stream analysis and 
output results to the Risk Manager class of the serving layer. 

StreamAnalyser.java [Placeholder] 
Will hold the code respective to the data processing done in the stream layer. Currently, this 
code is in the StreamProcessor class but it will be moved to this class to allow the 
StreamProcessor class to serve as a manager of all components in the stream layer. 

StreamStorage.java [Placeholder] 
Currently, the data is stored in memory, in the RMM. This allowed for faster development and 
testing, but this is just a temporary solution, as it is much less performant. This class will hold 
the code pertaining to storage connection management and operations in the speed layer. 

SpeedLayer.java 
Interface describing the methods that must be implemented by the StreamProcessor class. 

StreamProcessor.java 
The implementation regarding data processing in the stream layer is currently done in this 
class but in the future this class will serve as a manager between components in the stream 
layer in order to allow separation of concerns between classes. Currently this class receives 
the formatted and structured log messages passed by the MessageBroker class and performs 
a series of operations on that data, which can be seen in Figure 5. First logs received are 
windowed according to WINDOW_LENGTH in seconds, which currently is 2 seconds, which 
corresponds to the batch interval, or the interval in which messages are retrieved from the 
Message Bus. Afterwards, these messages are parsed using the DrainStreaming algorithm. 
The output of that step is used to build an event count dataset, from which a vector is extracted 
for use in the clustering algorithms. At this stage of development clustering and anomaly 
detection is still not implemented. 
 

3.6.2.8. Utils Package 
General utility classes are contained within this package. These are the following: 

MessageGenerator.java 
Class used to generate messages according to the PoSeID-on message format from a dataset 
of logs. Each entry of the dataset is converted into a message and sent to the MessageBus. 
This allows us to test the anomaly detection pipeline with actual messages. 

MessageProtocol.java 
Implements all the operations related to the creation, verification, encryption and decryption 
of messages, according to the PoSeID-on message protocols. 

Pair.java 
Wrapper class used in the java implementation of the Drain log parsing algorithm in order to 
be able to return two resulting objects from a method. 
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RMMUtils.java 
Implements miscellaneous methods for actions such as data type conversions, fetching 
environment variables and printing variables descriptions. 

UncaughtExceptionLogger.java 
Sets up a logger of Uncaught Exceptions using the Log4J2 logging framework. 
 

3.6.3. Main Class 

RiskManagementModule.java 
This class is the main class of the Risk Management Module and it is the class that ties every 
component together. Firstly, it sets up Spark to run either in local cluster mode or connected 
to a Kubernetes cluster, according to the supplied environment variables. Details regarding 
environment variables used in RMM will be given in the configuration section. 
Once a Spark Session is successfully generated, a Spark Streaming Context is generated 
from it, and both the Session and the Context are passed to new instances of the 
StreamProcessor and MessageBroker. An instance of the MessageGenerator is also created 
and ran in order to provide testing input for the RMM. After all classes are instanciated, both 
the MessageGenerator and the MessageBroker are run in order to start processing messages 
in the RMM. 

 
  

3.7. Configuration and Deployment 
In order to follow the 12-factor standards and the choice of Kubernetes, which is described in 
the integration deliverable D5.1, all configuration of the software will happen through 
environment variables, with the exception of regular expressions and log structure used by 
Drain log parser, since this is domain specific and will change very rarely between 
deployments. Currently environment variables are passed to the docker build tool but this will 
be changed to be supplied through the runtime environment in the future, since secrets passed 
this way can be accessible by inspecting the built containers. Deployment will be done through 
an OCI container image. 
Configuration about how the application should be started is done through the Dockerfile which 
is part of the OCI container image. Deployment settings will be supplied using Kubernetes 
configuration files in the yaml format. 
The Dockerfile also provided with the code takes care of all the steps necessary for building 
the OCI container image, including the installation of the custom JAR file containing the 
RabbitMQ Streaming Receiver which is also provided in the libs folder of the project. 
A complete list of environment variables will be provided for the final version. The currently 
used environment variables are the following: 
 
 
 
MAVEN_OPTS 
Options for the maven compiler should be at least: 
“-Xmx2g -XX:ReservedCodeCacheSize=512m” 
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KEYPAIR_SEED 
Temporary seed to generate the RMM certificate. This is just for testing and debugging 
consistency as certificates will be loaded from files in the upcoming integrated versions of the 
RMM. 
 
MESSAGE_QUEUE_PASSWORD 
Password for the RabbitMQ queue connection. 
 
MESSAGE_QUEUE_USERNAME 
Username for the RabbitMQ queue connection. 
 
MESSAGE_QUEUE_HOST 
Host address for the RabbitMQ queue connection. 
 
MESSAGE_QUEUE_PORT 
Port for the RabbitMQ queue connection. 
 
MESSAGE_QUEUE_NAME 
Name of the RabbitMQ queue the RMM will connect to. 
LOCAL_THREADS 
Number of threads to be assigned to the local Spark cluster. Must be at least 2, one for the 
Spark Driver and another for a Spark Worker. If no value is given, the RMM assumes it should 
connect to a Kubernetes cluster and will make use of the Kubernetes environment variables. 
 
KUBERNETES_HOST 
Host address for the Kubernetes cluster connection. This is only used if the 
LOCAL_THREADS variable is not set. 
 
KUBERNETES_PORT 
Port for the Kubernetes cluster connection. This is only used if the LOCAL_THREADS variable 
is not set. 
 
INPUT_PATH 
Path to the log file used for testing purposes by the MessageGenerator. 
 
FILE_NAME 
Name of the log file used for testing purposes by the MessageGenerator. 
 
 

3.8. Unit Testing and Validation 
In the current phase of development, unit and integration testing and validation are very 
limited, as the focus is on having a working prototype as fast as possible for integration. 
Nevertheless, a few unit tests have been developed which do not, by all means, provide 
complete coverage of all operations. Only critical aspects of certain libraries were tested in 
order to guarantee the proper function of the tested classes. The implemented tests are the 
following: 
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MessageProtocolTest.java 
Tests developed in order to verify the message protocol implementation. These comprise: 

• Verification of signed payloads using correct and forged signatures 
• Successful decryption of messages with the correct keys and failure otherwise 
• Verification of signed and unsigned certificates 

 
RegexTest.java 
Tests developed in order to experiment with Java Regex. These tests were merely to aid in 
the implementation of the Drain log parsing algorithm in java. 
 
SparkTest.java 
Tests developed in order to experiment with Spark SQL. These tests were merely to aid in the 
implementation of the Drain log parsing algorithm in java. 
 
After integration, proper unit and integration testing will be performed as part of Work Package 
6 which focuses on the testing and evaluation of the PoSeID-on platform as a whole. For more 
information on the roadmap for pilot evaluation and testing, deliverable D6.1 [24] can be 
consulted. 
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4. Personal Data Analyser 
 
This section starts by introducing the PDA’s architecture and design. Subsequently, a 
description and comparison of NLP tools, data labelling schemes, and datasets is provided. 
The section also includes the results of a comparative study of the referred tools. Finally, 
development, deployment and validation details are provided. 

4.1. Architecture and System Design  
 
The Personal Data Analyser (PDA) is a software module developed to control personal data 
in a transaction. By resorting to state-of-the-art Natural Language Processing (NLP) tools and 
Artificial Intelligence (AI), it aims at discovering all previously non-identified personal data, 
such as personal data for which there is no data subject authorization.  
The PDA interacts directly with the Message Bus – a shared message queueing service used 
within the PoSeID-on platform. As shown in Figure 6, through the Message Bus, the PDA 
establishes communication with three other modules: Dashboard, Data Processor API and the 
Risk Management Module (RMM). This allows the PDA to receive analysis requests and return 
analysis results whenever there is explicit consent from the data subjects. In addition, there is 
a one-way communication from the RMM module where information about Data Processors’ 
reputation and incident history is provided. 
As each message arriving at the PDA is serialized and dully encrypted, it needs to be handled 
by the Request Processor, which performs deserialization and decryption procedures. 
According to the received message, the contents are forwarded to the correspondent 
components: Metadata Extractor, Structured Data Processor or Permissions Analyser. 
The information gathered at the previous components is forwarded to the NLR / NLU 
Processing Unit, which uses NLP mechanisms (described in the following sections) to process 
the information. The final stage is the assessment of privacy risk, using privacy metrics and 
the results derived from the NLP process. An answer is generated and sent back to the 
respective requesters, through the Message Bus. 
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Figure 6 - Personal Data Analyser Architecture 

Additional architectural information can be found in deliverable D2.2 – System Requirements 
and Architecture. The following sections provide technical information regarding the 
development of the PDA internal components.  

4.2. Natural Language Processing (NLP)  
 
Before the development phase, there was a preliminary stage that addressed the identification 
of the state-of-the-art, a set of experiments with different NLP tools, assessment of 
characteristics, and the gathering of different types of available datasets. The assessment of 
capabilities relied on the evaluation of performance, accuracy, model training options, labelling 
schemes, language support, and types of machine learning capabilities. 
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4.2.1. NLP Tools 
Natural Language Processing tools are software libraries and applications that are used for 
extracting information from text in digital format and derive meaning from it. The analysis can 
be performed, for instance, of over semantics, syntax, or speech, with each one having its 
particular challenges. For example, most tools support tokenization, Part of Speech (POS) 
Tagging or lemmatization. Other features such as Named Entity Recognition (NER), 
translation, recognizing textual entailment or NLU are not as available in terms of quantity and 
quality. Nevertheless, in the following paragraphs, we provide some examples of options that 
are available and their main characteristics.  
The Natural Language Toolkit (NLTK) [25] is one of the most well-known NLP tools. It is 
community-driven and open-source Python software, which allows the manipulation of 
different corpora, categorizing text or analysing linguistic structure (e.g., tokenization, POS 
tagging, or NER). The Stanford CoreNLP [26] tool stands out as a reference tool in the field of 
NLP. The tool is open-source, developed in Java and, among other features, it is capable of 
performing sentiment analysis, dependency parsing, or NER, for instance. In 2016, 
ExplosionAI introduced SpaCy [27] as the fastest NLP library in the world. The fact is that it is 
not only fast, but also performs well against similar tools and supports similar features [27]. 
There are other NLP tools such as: TextBlob [28] or Polyglot [29] developed in Python which 
got inspiration from NLTK; the General Architecture for Text Engineering (GATE) [30] 
developed in Java, which comprises several components for specific purposes such as HTML, 
XML or email processing; or Google’s SyntaxNet [31], which uses the open-source 
TensorFlow [32] machine learning platform to provide an NLU toolkit.  
Given the reputation from NLTK and Stanford CoreNLP, both in academic and research 
environment, we decided to compare the two with a recent and promising tool such as spaCy, 
which is also designed to operate in production environments. As such, Table 5 shows the 
high-level features that these three tools have to offer. The most relevant features for the PDA 
development are the possibility of updating the machine learning models, the types of Named 
Entities supported, and the available languages. For these relevant requirements, spaCy is 
the tool that performs the best, by allowing the retraining of models, having the number of 
named entities in their models, and by supporting the languages to be used in the PoSeID-
on’s pilots. 
 

NLP Tools 
 

Natural Language Toolkit 
- NLTK v3.4 (Python) 

Stanford CoreNLP v3.9.2 
(Java) 

SpaCy v2 
(Python) 

Relevance for  
PDA requirements 

Methods 
Linear CRF’s 

Linear / 
Neural (CNN) not officially 

supported 
Linear / Neural (CNN) 

Low 
relevance 

Can a model be re-
trained/updated? No No Yes 

High 
relevance 

Default Entities 

ORG, PERSON, 
LOCATION, DATE, TIME, 

MONEY, PERCENT, 
GPE, FACILITY 

ORG, PERSON, LOCATION, 
DATE, TIME, MONEY, 

PERCENT, 
NUMBER, ORDINAL, 

DURATION, SET, MISC 

ORG, PERSON, LOC, DATE, 
TIME, MONEY, PERCENT, 

GPE, FAC, NORP, PRODUCT, 
EVENT, WORK_OF_ART, 

LAW, LANGUAGE, 
QUANTITY, ORDINAL, 

CARDINAL 

High 
relevance 
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Model Training 
Scheme 

IO, IOB IO, IOB BILOU 
Low 

relevance 

Default Languages 
Supported for POS 
Tagging and NER 

English 
English, German, Spanish, 

Chinese 

English, German, Spanish, 
Portuguese, French, Italian, 
Dutch, (and Multi-language) 

High 
relevance 

Documentation Book, articles, manuals, 
GitHub, Website 

Articles, GitHub, FAQ’s, 
Website 

Articles, GitHub, Manuals, 
Website, Specific Tutorials 

Moderate 
relevance 

Table 5 - Comparison of NLP Tools General Features 

 
On a more fine-grained analysis, Table 6 shows a comparison between specific NLP 
functionalities provided by each tool. Such features are common NLP tasks that can be used 
by the PDA for the interim version, and others can further complement it with additional 
development for the final version. It is possible to observe that Stanford CoreNLP natively 
supports all the listed features. Nevertheless, NLTK and spaCy can equally support them by 
using additional functionalities. For instance, spaCy can perform textual entailment by using 
Keras [33] or predict gender identification by using previously labelled dictionaries.  

 
 

NLP Tools 
 

Natural Language Toolkit 
- NLTK v3.4 (Python) 

Stanford CoreNLP v3.9.2 
(Java) 

SpaCy v2 
(Python) 

Relevance for  
PDA requirements 

Part of Speech 
Tagging Yes Yes Yes 

Low  
relevance 

Lemmatizing 
Yes Yes Yes 

High  
relevance 

Named Entity 
Recognition Yes Yes Yes 

High  
relevance 

Textual Entailment 
Yes Yes - 

Low  
relevance 

Dependency Parsing 
- Yes Yes 

Low  
relevance 

Sentiment Analysis 
Yes Yes - 

Low 
relevance 

NER Regexp 
Yes Yes Yes 

High  
relevance 

Gender 
Identification Yes Yes - 

Moderate  
relevance 

Table 6 - Comparison of NLP Tools Technical Features 
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To understand over which kind of data such tools operate, the following sections will introduce 
the labelling schemes used to train the NLP machine learning models and the types of 
datasets that are available to train such models.  

 

4.2.2. Labelling Schemes 
 
A labelling scheme is a notation (or encoding) used on training datasets. It is a crucial step for 
training the language models used in NLP tasks. It is intended to teach the software how to 
classify text. It is usually used for Part of Speed Tagging and Named Entity Recognition, in 
which the latter stands as an essential functionality of the Personal Data Analyser. The most 
common schemes are IO (Inside, Outside), IOB (Inside, Outside, Begin) and BILOU (Begin, 
Inside, Last, Outside, Unit). Intuitively, with more detail, better classification performance 
should be expected.  
In fact, reference [34] shows that the BILOU scheme results are in improved performance. 
Given the characteristics of each labelling scheme, BILOU is the one offering one of the 
highest levels of detail. Of course, this applies to the group of languages we intend to use. For 
other languages, different schemes like IOB2 might perform better [35].  
 

Scheme 
 

IO IOB BILOU 

“Simon is going to 
San Francisco” 

Simon I-PER 
is O 
going O 
to O 
San I-LOC 
Francisco I-LOC 

Simon B-PER 
is O 
going O 
to O 
San B-LOC 
Francisco I-LOC 

Simon U-PER 
is O 
going O 
to O 
San B-LOC 
Francisco L-LOC 

“Tim Cook 
presented Apple’s 
new iPhone 8 last 
Thursday.” 

Tim I-PER 
Cook I-PER 
presented O 
Apple I-ORG 
new O 
iPhone I-PRODUCT 
8 I-PRODUCT 
last O 
Thursday I-TIME 

Tim B-PER 
Cook I-PER 
presented O 
Apple B-ORG 
new O 
iPhone B-PRODUCT 
8 I-PRODUCT 
last O 
Thursday B-TIME 

Tim B-PER 
Cook L-PER 
presented O 
Apple U-ORG 
new O 
iPhone B-PRODUCT 
8 L-PRODUCT 
last O 
Thursday U-TIME 

“Martin Luther King 
Jr. was born in 
Atlanta” 
 

Martin I-PER 
Luther I-PER 
King I-PER 
Jr. I-PER 
was O 
born O 
in O 
Atlanta I-LOC 

Martin B-PER 
Luther I-PER 
King I-PER 
Jr. I-PER 
was O 
born O 
in O 
Atlanta B-LOC 

Martin B-PER 
Luther I-PER 
King I-PER 
Jr. L-PER 
was O 
born O 
in O 
Atlanta U-LOC 

Table 7 - Labelling Schemes Examples 

 
Table 7 shows the differences between the operation of IO, IOB and BILOU schemes. It is 
possible to see that the IO scheme holds basic information about an entity, and it is very 
limited, as it cannot represent two adjacent entities. IOB records not only the existence but 
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also the beginning of a multi-word entity. Finally, BILOU records the existence of an entity by 
its beginning word, its interior word and its last word, as well as the information about unitary 
entities. 
 

4.2.3. Datasets 
Some datasets are particularly useful for NLP-related tasks, and their usual denomination is 
corpus (i.e., a text collection). The corpora are labelled (i.e., tagged) on a variety of topics such 
as cultural, financial, political, scientific and others. The labelling is handmade and contains a 
tag for each and every word in the context of each sentence. For instance, “The little yellow 
cat” is represented as “The/DT little/JJ yellow/JJ cat/NN”, where DT stands for Determiner, JJ 
for Adjective, and NN for a Noun. Below, there are examples of such datasets and respective 
characteristics. Some datasets have more descriptive characteristics than others due to the 
publicly available information about each of them. 
 

● OntoNotes 5 
○ Release Date: 2013 
○ Data Sources: telephone conversations (Tele), newswire (News), newsgroups, 

broadcast news (BN), broadcast conversation (BC), weblogs 
○ Contents: News 625k, BN 200k, BC 200k, Web 300k, Tele 120k 
○ Penn Treebank for syntax and the Penn PropBank for predicate-argument 

structure 
○ Access: Registration and organization approval is necessary 
○ Source: https://catalog.ldc.upenn.edu/LDC2013T19 
○ NER 

 
● Reuters Corpus, Volume 1 (RCV1) 

○ Release Date: 2000 
○ Data Sources: Reuters, English Language News stories 
○ Contents: News 810k 
○ Needs a signed form: 

https://trec.nist.gov/data/reuters/ind_appl_reuters_v4.html 
○ Source: https://trec.nist.gov/data/reuters/reuters.html 
○ Publicly accessible, with licence 

 
● CoNLL 2003 (Conference on Computational Natural Language Learning) 

○ Manual annotation of a RCV1 subset 
○ Publicly accessible 
○ Source: https://github.com/Franck-

Dernoncourt/NeuroNER/tree/master/neuroner/data/conll2003/en 
 

● The MUC 3 and MUC 4 
○ Publicly accessible 
○ With NER 
○ Contents: News reports 
○ Topics: Terrorist activities in Latin America 
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○ https://www-
nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html 

 
● ACE 2002 (Automatic Content Extraction)  

○ Contents: transcripts, newswire, and newspaper 
○ Fee payment 
○ With NER 

 
● MUC 6 and 7 (Message Understanding Conference) 

○ Contents: News reports 
○ Topics: Negotiation of Labor Disputes and Corporate Management 

Succession; Airplane crashes, and Rocket/Missile Launches 
○ Fee payment (Accessible to LDC members) 

 
● The New York Times Annotated Corpus 

○ Fee payment (Accessible to LDC members) 
○ Contents: newswire – over 1.8 million articles 
○ Topics: people, organisations and locations 

 
● GMB (Groningen Meaning Bank) 

○ Publicly accessible 
○ With NER 
○ https://gmb.let.rug.nl/data.php 
○ PMB (Parallel Meaning Bank) is a derivation of GMB with more 

languages (https://pmb.let.rug.nl/data.php) 
○  

 
● GMB-derived (developed by the community) 

○ With NER 
○ Publicly accessible 
○ https://www.kaggle.com/abhinavwalia95/entity-annotated-

corpus#ner.csv 
 

● Enron Email Dataset 
○ With NER 
○ Publicly accessible 

 
● English Gigaword 

○ With NER 
○ News 
○ Fee payment 
○ https://catalog.ldc.upenn.edu/LDC2003T05 

 
● Brown 
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○ No NER 
○ Publicly accessible 

 
Despite the availability of several datasets, PoSeID-on is context-specific. Therefore, it is 
preferable to produce datasets containing PII-related information. This task is extremely 
difficult since PII is a sensitive type of data and it is not openly accessible.  
To circumvent this issue, it is necessary to generate synthetic data that resembles real data 
as closely as possible. In this way, it is possible to train and teach the Personal Data Analyser 
to (correctly) identify PII (e.g., names, addresses, locations, events, etc.). There are other 
methods for identifying specific PII attributes, which are discussed further on.  
Although most of the listed datasets feature entity annotation, many do not provide open 
access. As such, preference is given to datasets that are freely accessible and contain labelled 
entities.  
We did not find a direct specification regarding gold-standard status of the datasets. The 
available information describes the datasets as mostly machine-annotated, requiring human 
intervention for correction. 
 
 
Corpus Named Entities 

 
 

Availability Size Notes 

OntoNotes 5  
(Spacy) 

YES - 18 Fee payment 1.445.000  
tokens 

No price shown; request submitted 
from UC organization; no answer 
so far 

RCV1 NO Publicly available, with licence 
agreement 

810.000  
news stories 

Takes time to sign paperwork and 
wait for approval 

CoNLL 2003  
(NLTK, Stanford) 

Yes - 5 Publicly available, with RCV1 301.418 
tokens 

Linked to RCV1 - time 

MUC 3 / 4 YES Publicly available Information not 
available 

Freely available, no information 
found regarding its characteristics 

MUC 6 / 7  
(Stanford) 

YES Fee payment Information not 
available 

- 

ACE 2002 YES Fee payment Information not 
available 

- 

New York Times 
Corpus 

YES Fee payment 1,8 million  
articles 

- 

GMB YES - 8 Publicly available 1,374,629 
tokens 

Available to download 

GMB-derived YES - 8  Publicly available 1.354.149 
tokens 

Available to download from Kaggle 
(updated by the community) 

Enron Email  YES Publicly available 200.399 
messages 

Available to download 

English Gigawork YES Fee payment 1.756.504 
tokens 

- 

Brown  
(NLTK) 

NO Publicly available 1.000.000 
tokens 

Available to download but no 
named entities 

Table 8 – Corpus’ Characteristics Summary 

 
Listed in Table 8 is a summary of the previously described datasets. It is possible to observe 
that some fields are not completed due to the impossibility to find such information (e.g., 



 
  

52 
 

number of entities available, or the overall size of the corpus). The first column (Corpus) 
identifies which corpora are used by the previously identified NLP tools. It is shown that spaCy 
uses trained OntoNotes5 models, which is one of the largest and most tagged corpora. Below, 
we present the details of experiments performed with the previously identified NLP tools and 
a publicly available dataset. 

4.3. Comparative Study NLP Tools 
 
In order to analyse and evaluate the characteristics of NLP tools, it is necessary to identify the 
number of true positives (TP), true negatives (TN), false positives (FP) and false negatives 
(FN). Therefore, the following metrics are applied: 
 

● Accuracy: the ratio between the number of correct choices to the total number of 
choices. This metric should be applied when there is an even class distribution. 
Therefore, there might be cases where it is not provided, as it does not provide the 
desired insight.  

 
● Precision: the ratio between the number of correct positive choices to the total number 

of positive choices.  
 

● Recall: the ratio between the number of positive choices to the real number of choices. 
This means not only true positives but also false negatives (i.e., false negatives are 
positives).  
 

● F1 Score: weighted average between precision and recall. Contrary to accuracy, this 
metric becomes more helpful when dealing with uneven class distributions, which is 
the expected case in the Personal Data Analyser. It is used in related work to evaluate 
the models built for different purposes.  

 
The previously described metrics are formulated as shown in Table 9: 

 
Metric Formula 

Accuracy (TP+TN)/(TP+FP+FN+TN) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

F1-Score 2*(Recall * Precision) / (Recall + Precision) 

Table 9 - Metrics Formulation 

 
Based on the information retrieved from the publishers of the tools, the scores provided with 
default models are very similar. This can be explained by the types of datasets used for model 
training, as well as the fine-tuning of the training process. In Table 10 the scores show that 
they have an average F1-Score of 0,85.  
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Tools 
Natural Language Toolkit - 

NLTK v3.4 (Python) 
Stanford CoreNLP 

v3.9.2 (Java) 
SpaCy v2 

(Python) - Neural 

Linear Linear Small Model [36] Medium Model [37] Large Model [38] 

Precision 0,86 - 0,84 0,85 0,85 

Recall 0,83 - 0,85 0,86 0,86 

F1 Score 0,86  0,86 0,85 0,85 0,85 

Table 10 – Default Named Entity Recognition Scores from NLP Tools  

There are also scientific publications which indicate better than average results. This is 
explained by the specificity of the models. Instead of generalizing the models, the authors use 
datasets that are context-specific, and thus perform very well on specific scenarios.  
It is important to note that SpaCy provides a model that supports several languages. The 
supported languages are English, German, Spanish, French, Italian, Portuguese and Russian. 
The entities included in the model are Person, Location, Organization, MISC. 
Finally, the scores are as follows:  
 

- F1 - 78,55;  
- Precision - 78,48;  
- Recall - 78,62. 

 
Additional local experiments have been performed. Since the GMB (Groningen Meaning Bank) 
dataset is openly distributed, has more than one million tokens, and eight classed of names 
entities, it was chosen for the experiments. From the total size, the dataset was partitioned 
into smaller sub-sets. Each subset was divided into two portions: 70% for training, and 30% 
for validation. It was possible to train and evaluate models with the three tools under 
consideration. The results obtained by each tool are presented below. 

4.3.1. NLTK 
 
The complete details such as code, datasets, and results of the NLTK experiments can be 
found at the GitHub’s repository (e.g., GMB(Kaggle)09-04-2019/_SIZE_pc). In the following 
section, a summary of the experiments performed with NLTK is presented. 
 
Dataset 
size (%) 

Training 
Sentences 

Validation 
Sentences 

Precision Recall F1-Score 

2,5% 839 359 0,4370 0,521 0,475 

5% 1678 719 0,527 0,625 0,572 

10% 3356 1438 0,555 0,647 0,597 

20% 6713 2877 0,602 0,714 0,653 

30% 10071 4316 0,589 0,696 0,638 

40% 13428 5755 0,595 0,71 0,647 

50% 16786 7193 0,606 0,719 0,658 

60% 20143 8632 0,605 0,717 0,657 
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70% 23500 10071 0,609 0,719 0,659 

80% 26857 11510 0,611 0,716 0,659 

90% 30214 12949 0,614 0,72 0,663 

100% 33572 14387 0,618 0,726 0,668 

Table 11 - NLTK v3.4 NER Scores - GMB (Kaggle) Dataset 

Table 11 shows the information on each training set and respective results used in the NLTK 
experiments. For each training set we present the number of sentences used to train the 
models, and with how many validation sentences was the model evaluated. Then we provide 
the respective Precision, Recall and, F1-Scores. 
 

 
Figure 7 – NLTK time spent to train the model 

In Figure 7, it can be seen a close to linear growth of the time necessary to train models. 
Starting with the smallest portion of the dataset (2,5% of the original size), the models takes 
around 2 seconds to train. On the other end, using the full-size dataset (100% of the original 
size), it takes almost 75 seconds to train the models. It is not possible to record the number of 
iterations as NLTK does not provide such information. 
 
 

 
Figure 8 – NLTK F1 Scores 
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While for the model training time it was observed a close to linear growth, in Figure 8  it is 
noticeable a different trend in the F1 Score of the models. With an F1-Score of 0,47 with the 
smallest dataset (2,5%), there is a gradual growth (along with the dataset increase) until 
reaching an F1-Score of 0,65 with the 20% dataset. From that point on, there is only a small 
improvement with the increase of the dataset sizer Reaching the best F1-Score (0,668) with 
the fully-sized dataset (100%).  

 

 
Figure 9 – NLTK overall results 

Figure 9 depicts the overall results which include the precision and recall values obtained in 
the experiments. All show the same tendencies as the F1 Scores. The results obtained from 
the experiments performed with NLTK allow us to draw a few conclusions: (i) model training 
is very fast; (ii) the overall F1 Score is limited, with the maximum being 0,61 with the full-size 
dataset; (iii) with a relatively small dataset (20%) the results are similar to the ones obtained 
with a much larger dataset (100%).  
 

4.3.2. Stanford Core NLP 
 
The complete details such as code, datasets and results of the Stanford CoreNLP experiments 
can be found at the Git’s repository (e.g., GMB(Kaggle)09-04-2019/_SIZE_pc). In the following 
section, a summary of the experiments performed with Stanford CoreNLP is presented. 
 
Dataset 
size (%) 

Training 
Sentences 

Validation 
Sentences 

Precision Recall F1-Score 

2,5% 839 359 0,6819 0,6332 0,6566 

5% 1678 719 0,7522 0,7195 0,7355 

10% 3356 1438 0,7688 0,7453 0,7568 

20% 6713 2877 0,8265 0,8047 0,8155 

2.50% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
PRECISION 0.44 0.527 0.555 0.602 0.589 0.595 0.606 0.605 0.609 0.611 0.614 0.618
RECALL 0.521 0.625 0.647 0.714 0.696 0.71 0.719 0.717 0.719 0.716 0.72 0.726
F1 0.475 0.572 0.597 0.653 0.638 0.647 0.658 0.657 0.659 0.659 0.663 0.668
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30% 10071 4316 0,8208 0,8062 0,8134 

40% 13428 5755 0,8317 0,8175 0,8245 

50% 16786 7193  0,8389 0,8274 0,8331 

60% 20143 8632 0,8453 0,8290 0,8371 

70% 23500 10071 0,8450 0,8268 0,8358 

80% 26857 11510 0,8454 0,8248 0,8350 

90% 30214 12949 0,8465 0,8299 0,8381 

100% 33572 14387 0,8516 0,8360 0,8438 

Table 12 - Stanford CoreNLP v3.9.2 NER Scores - GMB (Kaggle) Dataset 

Table 12 shows the information on each training set and respective results used in the 
Stanford CoreNLP experiments. For each training set we present the number of sentences 
used to train the models, and with how many validation sentences was the model evaluated. 
Then we provide the respective Precision, Recall, and F1-Scores. 
 

 
Figure 10 – Stanford CoreNLP time spent to train and number of iterations 

 
In Figure 10, we observe a growth in training time, which contrasts with the previous tool, as 
it takes much longer to train similar models. In the fully-sized dataset, the training took around 
120 minutes. The smaller partitions of the dataset train in less than 10 minutes.  
The behaviour of the number of iterations necessary to train is quite unexpected. It was 
possible to observe a steady increase in the time spent on model training up to 70% of the 
dataset size. From that point on, we observe a decrease in the number of iterations necessary 
to train the models. The explanation for this behaviour lies in the limitation we have imposed 
on the number of iterations. Since it can be very demanding in terms of time and memory, we 
limited the number of iterations for Stanford CoreNLP (and spaCy) to a maximum of 500.  
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Figure 11 – Stanford CoreNLP F1 Scores 

The F1-Scores obtained from the experiments show an improvement in comparison with 
NLTK. In Figure 11, it is possible to note the increasing tendency up to the 20% size dataset 
and stabilizing (with very small variations) after that point. From the 20% size to the fully-sized 
dataset, there is only a slight improvement of almost 0,03 in the score. 

 

 
Figure 12 – Stanford CoreNLP overall results 

Figure 12 depicts the overall results which include the precision and recall values obtained in 
the experiments. All of them show the same tendencies as the F1 Scores. The results obtained 
from the experiments performed with Stanford CoreNLP allow us to draw a few conclusions: 
(i) model training is still fast, even though the longer takes over 120 minutes; (ii) the overall F1 
Score is getting good values of about 0.8, with the maximum being 0,84 with the full-size 
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dataset; (iii) with a relatively small dataset (20%) the results are similar to the ones obtained 
with a much larger dataset (100%). 
 

4.3.3. Spacy 
 
The complete details such as code, datasets and results of the spaCy experiments can be 
found at the Git’s repository (e.g., GMB(Kaggle)09-04-2019/_SIZE_pc). In the following 
section, a summary of the experiments performed with spaCy is presented. 

 
Dataset 
size (%) 

Training 
Sentences 

Validation 
Sentences 

Precision Recall F1-Score 

2,5% 839 359 0,6455 0,6440 0,6448 

5% 1678 719 0,7226 0,7333 0,7428 

10% 3356 1438 0,7810 0,7723 0,7766 

20% 6713 2877 0,8045 0,8170 0,8107 

30% 10071 4316 0,8095 0,8240 0,8160 

40% 13428 5755 0,8320 0,8349 0,8335 

50% 16786 7193  0,8461 0,8499 0,8480 

60% 20143 8632 0,8454 0,8460 0,8457 

70% 23500 10071 0,8530 0,8596 0,8566 

80% 26857 11510 0,8527 0,8591 0,8559 

90% 30214 12949 0,8530 0,8603 0,8570 

100% 33572 14387 0,8600 0,8700 0,8653 

Table 13 - spaCy v2 NER Scores - GMB (Kaggle) Dataset 

Table 13 shows the information on each training set and respective results used in the spaCy 
experiments. For each training set we present the number of sentences used to train the 
models, and with how many validation sentences was the model evaluated. Then we provide 
the respective Precision, Recall, and F1-Scores. 
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Figure 13 – spaCy time spent to train and number of iterations 

In Figure 13, we observe a much higher growth in training time in relation to the previous tools, 
as it takes up to 6000 minutes to train similar models. Even the smaller partitions of the dataset 
train in about 1000 minutes. As explained before, we have limited the number of training 
iterations to a maximum of 500. In fact, all the training sessions ran up to the maximum number 
of iterations. 
 

 
Figure 14 – spaCy F1 Scores 

The F1-Scores obtained from the experiments show little improvement in comparison with 
Stanford CoreNLP, and a large improvement regarding NLTK. As it happened with the two 
previous tools, in Figure 14 we note the same increasing tendency up to the 20% size dataset 
and stabilizing (again with very small variations) after that point. From the 20% size to the fully-
sized dataset, there is an improvement of only 0,05 in the score. 
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Figure 15 – spaCy overall results 

Figure 15 depicts the overall results, which include the precision and recall values obtained in 
the experiments. All of them show the same tendencies as the F1 Scores. The results obtained 
from the experiments performed with spaCy allow us to draw the following conclusions: (i) 
model training under such conditions is taking too much time; (ii) the overall F1 Score is getting 
good values of about 0.8, with the maximum being 0,86 with the full-size dataset; (iii) with a 
relatively small dataset (20%) the results are similar to the ones obtained with a much larger 
dataset (100%). 
Due to the fact that the training was taking too long, we decided to run a different set of 
experiments with spaCy. However, this time, we did not set the number of iterations to 500. 
For this experiment, we randomly defined the number of iterations. 
 

 
Figure 16 - spaCy time spent to train and number of iterations (under 500) 

As we can see in Figure 16, by setting the iteration number to under 500, the longest training 
session took 2000 minutes. Approximately three times faster than with 500 iterations. In this 
case, as the numbers were randomly chosen, the distribution of training times is not linear 
anymore. 
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Figure 17 - spaCy F1 Scores (under 500 iterations) 

 
The F1-Scores obtained from this experiment show almost the same results as the ones 
setting the iteration number to 500. We can see in Figure 17 that the F1-Scores are very similar 
to the ones shown in Figure 14. This means that we can still achieve quality results while 
spending less time training. According to spaCy’s documentation, developers should 
experiment with different paraments and fine-tune the model in order to provide the best 
results.  

4.3.4. Summary 
 
After having analysed all the obtained results, it was possible to draw a few overall conclusions 
regarding the three analysed tools. As Figure 18 shows, in our experiments, the worst 
performance was that of NLTK. On the other hand, although Stanford CoreNLP and spaCy 
achieved similar results, the best performance was seen in spaCy with a small margin. The 
results indicate that without any comprehensive tuning of the model training settings, spaCy 
provides the best results, while it still leaving room for possible improvement if specific 
configuration is applied (e.g., shorter training times by setting fewer iterations). 
 

 
Figure 18 - NLTK, Stanford CoreNLP and spaCy F1-Score Overall Results Comparison 
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On top of these results (and others like training time or iterations) are the characteristics of the 
NLP tools. We have seen that the features that are important for the PDA module, like the 
possibility of re-training models, having a high number of default entities or supporting a high 
number of languages, are present in spaCy. Moreover, spaCy’s development is in Python, 
which matches with the development language of the Personal Data Analyser module. 

4.4. Development 
This section starts by indicating and describing the intended usage of all the external libraries 
and packages (i.e., dependencies) currently used by the Personal Data Analyser. Then, it is 
followed by the implementation details and respective technical aspects to consider. 

4.4.1. Dependencies 
 
PyNaCl is a Python binding to Libsodium. There are many other Python bindings. However, 
the choice for PyNaCl is based on its usability, security, and speed. It supports digital 
signatures, secret-key encryption, public-key encryption, hashing and message 
authentication, password-based key derivation, and password hashing. The usage of this 
library allows the PDA to comply with the specification defined for the communications within 
the PoSeID-on platform (through the Message Bus) and assure that all messages are signed 
with a module-specific ED25519 key and encrypted using the respective Curve25519. 

1. PyNaCl    
2. V1.3.0      
3.    
4. from nacl.public import PublicKey, PrivateKey, SealedBox   
5. import nacl.utils   
6. import nacl.encoding   
7. import nacl.signing  

CommonRegex is an open-source library that provides off-the-shelf regular expressions that 
find specific types of personally identifiable information such as dates, times, phone numbers, 
links, emails, ips, ipv6s, prices, hex_colors, credit_cards, btc_addresses (bitcoin addresses), 
street_addresses. These fields have a predetermined format and syntax. Nevertheless, they 
are used by the PDA to find whichever fields fit such formats. 

1. commonregex       
2. V1.5.4   
3.    
4. from commonregex import CommonRegex   

PyPDF2 is a Python library that supports the handling of PDF files and the extraction of the 
respective information. It is used to load all the contents of a PDF file and to extract relevant 
metadata from the file container such as the number of pages (relevant for internal parsing), 
author, owner, date of creation, and other fields. 

1. PyPDF2             
2. V1.26.0     
3.    
4. from PyPDF2 import PdfFileReader   
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Protobuf 3 is a protocol buffer which serializes all the data flowing within the PoSeID-on 
platform for inter-module communication. As such, it was necessary to have the protocol 
format agreed by all partners (details are available in deliverable D5.1 – Integration). Then, it 
was necessary to compile the files containing the protocol format and to generate the Python 
code which acts as a protocol API. The necessary code developed to access and interact with 
the API is described in the next section (4.4.2 - Component Implementation).  

1. Protobuf             
2. V3.7.1     
3.    

Pika is a Python library of the AMQP 0-9-1 protocol that allows the interaction of the PDA with 
the RabbitMQ service running (i.e., the Message Bus). RabbitMQ is a queueing protocol that 
allows its connected services to publish and subscribe to streams of messages, which are 
similar to message queues; to store streams of records in a fault-tolerant and persistent way, 
and to process streams of records as they occur. 

1. pika             
2. V1.0.1     
3.    
4. import pika   

NLTK (Natural Language Tool Kit) is a Python library for Natural Language Processing. It 
supports several operations related to text processing such as tokenization, POS tagging, 
lemmatization or named entity recognition.  
In addition, this library also includes a bind to the Stanford CoreNLP library. In this way, it is 
possible to use the functionalities of Stanford CoreNLP in a Python environment, instead of a 
Java environment. Nevertheless, it is still necessary to load the jar files and classifiers for POS 
tagging and NER. Respectively, they are english-bidirectional-distsim.tagger and 
english.all.3class.distsim.crf.ser.gz. Finally, TextCat categorizes text using n-grams (i.e., bi-
grams in this case) and it allows the functionality of language identification. 

1. nltk               
2. V3.4.1   
3.    
4. from nltk.tag import StanfordNERTagger   
5. from nltk.tag import StanfordPOSTagger   
6. from nltk.classify.textcat import TextCat  

spaCy is a Python tool for Natural Language Processing. Similar to NLTK, spaCy supports 
most operations related with text processing. However, internally the mechanism it is different. 
While NLTK or Standord CoreNLP rely on linear methodologies like CRF’s, spaCy is using 
CNN’s and works vectors for its text processor methods. This means that it not only provides 
good performance scores (e.g., F1 Scores in named entity recognition), but also uses state of 
the art NLP mechanisms. The PDA module relies on spaCy with its large model en-core-
web-lg  2.1.0 to perform the necessary operations. 

1. spacy             
2. V2.1.4   



 
  

64 
 

Other miscellaneous libraries (listed next) are used for different actions. For instance, 
accessing environment variables, iterate through data structures, perform logging, or reading 
from CSV files.  
 
import os, logging, csv, sys, itertools, timeit 
 
The choice for the package installer was pip, v19.1. Using Python Version 3. The command 
to run pip could be mapped to pip3 in order to install the packages on Python V3. All the 
previous libraries are installed using pip upon setting up of the container image. Then, upon 
container deployment everything is ready and available with no need for further installation. 
 

4.4.2. Component Implementation 
The implementation process of the Personal Data Analyser follows the previously described 
architecture (Figure 6). Given the mostly modular structure of the PDA, it is possible to develop 
independent functions and algorithms for each one of its components.  
In the current section, we provide a description with the level of detail necessary to better 
understand the actual code and its methods. However, the actual code will not be listed in this 
section. Instead, the code is available at the PoSeID-on’s code repository (Bitbucket). It should 
be noted that this is an interim version and work is still in progress. 
The PDA receives incoming communication from three modules: Dashboard, RMM and Data 
Processor API. Therefore, one of the first components of the PDA architecture to be executed 
is the “Request Processor”. Following, there is a description of the PDA components main 
functions and main purpose. 
 
1) Request Processor 

This component is continuously listening to the message bus and waiting for requests. In 
order to do so, it is necessary to follow a series of steps, described next. 
a) Settings 

The first step is to dynamically load setting from local environment variables: 
MESSAGE_BUS_QUEUE_ADDRESS, MESSAGE_BUS_QUEUE_PORT, 
MESSAGE_BUS_QUEUE_NAME, MESSAGE_BUS_USERNAME, 
MESSAGE_BUS_PASSWORD. Such variables allow the PDA listen to its own queue 
and handle requests. 
 

b) Cryptography  
In order to handle the encryption and decryption, the functions 
create_sealed_box(key), encrypt_message(message) and 
decrypt_message(unseal_box,encrypted_message) rely on the methods from the 
PyNaCl library and perform the necessary operations. 
 

c) To Read from message bus 
Depending on the methods from the pika library (described in the previous section), 
the PDA is able to read and listen to messages from the message bus. The function 
listen_to_bus(address, port, queue) contains a callback function which continuously 
listens to the message bus and gets all the incoming messages. Once a message is 
received, the function which loads the contents is called.  
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d) To load Received Requests 

Every message arriving to the queue is a request that needs to be properly handled. 
As such, the function read_incoming_message(message, pda_secret_key, 
verification_key) starts by deserialising the message using a Protobuf specific function: 
ParseFromString(message). As described before, all the protobuf methods were 
previously compiled from the proto specification files. Then, a sequence of steps is 
performed to extract and validate information:  
i) Verify the PDA is in fact the recipient of the message: compare received recipient 

key with previously owned key; 
ii) Unseal the received sealed box with the body of the message recurring to the 

function and deserialise the contents; 
iii) Verify if the body of the message is signed by who claims to be the sender: 

compare the received sender key with the body signature; 
iv) Verify if the sender’s signature is valid; 
v) Finally, pre-defined dictionaries are loaded with the respective message 

information, either it is a direct message or an rpc_payload. 
 
e) To create Response Message 

Every incoming request requires a response. Therefore, the functions 
create_outgoing_direct_message(destination_pub_sign_key, *args) and 
create_outgoing_rpc_message(destination_pub_sign_key, *args) load all the 
respective fields of a message (direct_message or rpc_message). All the steps defined 
in the communication protocol are executed and an encrypted and serialised response 
becomes ready to be sent. It is similar to the reverse procedure described in d). 
 

f) To write to message bus 
In order to answer all incoming requests, the PDA needs to properly generate response 
messages and send them to the message bus. For that reason, the function 
send_to_bus(address, port, queue, message) is in charge of sending back a response 
to whichever other module that has made a request. Again, this function relies on 
methods from the pika library to be able to connect to the message bus. 
 

2) Metadata Extractor 
To extract relevant metadata (mainly from PDF files) the PDA uses the class 
PdfFileReader from the PyPDF2 library. First it is necessary to set all the fields that might 
be filled using the function metadata_types(). The next step is to retrieve fields such as 
author, title, creator, date, or subject. The extracted information is sent to the internal 
parser. In the architecture there is a description of URL and HTML metadata extraction. 
However, it will likely be dismissed for now due to the lack of internet connectivity from 
within the modules.  
 

3) Permissions Analyser 
The permissions refer to which Data Processor can access specific attributes of Personal 
Identifiable Information (PII). This component has the task of examining the permissions 
associated with each incoming request. Since the permissions are expected to have a 
description of its finality, they can also be forwarded to the NLR/NLU component for 
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identification and validation of particular purpose and attribute associated. At this stage of 
development (interim version), the permission’s analyser is still under development and 
not ready to be released. It will be delivered for the final version.  
 

4) Structured Data Processor 
The designed task of this component was to retrieve all the necessary fields contained in 
the organised data structure sent by the Request Processor component. Such fields 
comprise key/value pares that can have different data types such as string, numbers or 
files. However, as development advanced, the functionalities of this component were 
merged with the request processor component due to the type data extraction already 
performed upon the handling requests. Therefore, as of the interim version, the Request 
Processor and Structured Data Processor are merged.  
 

5) Internal Parser 
The Internal Parser component extracts the contents from the various file types supported 
by the PDA. In conjunction with the previously extracted metadata it builds internal data 
structures with all the information. Firstly, it is necessary to identify the type of files being 
analysed using the function get_file_type(file_input) which returns the respective name 
and extension. According to the file type being processed, the function file_selector(path, 
filetype) calls the respective parsers. In case of PDF’s, the files are open, checked if they 
are encrypted with check_encryption(pdf) and the contents are extracted recurring to 
PdfFileReader from the PyPDF2 library. In the case of TXT or CSV files, the method is 
similar as it recurs to Python native methods to open and load the contents to internal 
data structures. Such information is then ready to be sent to the NLR / NLU Processing 
Unit for analysis. 
 

6) NLR / NLU Processing Unit 
The Natural Language Reasoning and Natural Language Understanding Processing Unit 
is one of the PDA’s core components. The search, identification and classification of text 
happens at this stage. At this in time, the PDA’s interim version of the implements a hybrid 
approach for NLP processing. This means that it combines the usage of NLTK, Standard 
CoreNLP, spaCy and regular expressions in order to identify as many entities as it can 
possibly find. Of course, some entities might not be accurate or may even be repeated. 
Nevertheless, this is a situation we will tackle after the interim version. As well as to use 
our own ML models.  
At this stage, the actual data to be analysed is already extracted and ready to be forwarded 
to the NLP pipeline. As such, the NLP pipeline can be described by the following steps: 
 
a) Settings and initialisation  

The first step is to import the necessary libraries such as NLTK, spaCy and other 
utilities. Then, it is necessary to indicate the path to the location of Stanford CoreNLP 
model and tagger. Finally, we define the data structures to be used: doc_contents, 
page_number, lang, filetype, sentences and tokens.  

 
b) NLTK 

With the Natural Language Toolkit (NLTK) it is necessary to perform tokenization and 
part of speech tagging before starting the named entity recognition process. For that, 
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we execute word_tokenize(doc_contents) and pos_tag(sent). Beyond this point, we 
have a collection of tagged tokens ready to be forwarded to the named entity 
recognition, which is a chunker. We execute our custom made nltk_ner(tags) function 
and save to data structures the named entities that were found (e.g., PERSON or 
DATE). 
 

c) Stanford CoreNLP 
In this case, the process is similar in terms of the need for part of speech tagging. Our 
custom made stanford_ner() first performs POS tagging on the data and then runs 
StanfordNERTagger(STN_NER_TAGGER). Upon the end of execution, we filter the 
entities we are looking for (e.g., PERSON or LOCATION) and save the results to data 
structures. 
 

d) SpaCy 
On the other hand, spaCy does not require previous part of speech tagging of the text 
in separate functions. Instead, it is only necessary to load the NER model 
(en_core_web_lg) and run nlp(doc_contents). The resultant data structure contains the 
identified named entities as well as other relevant information that it automatically 
extracts. It is a very straight forward process. It only necessary to filter the entities we 
are looking for with spaCy (e.g., TIME or MONEY) and save the results to data internal 
data structures.  
 

e) Regular Expressions 
Last stage of the NLP pipeline in the interim version is the regular expressions 
component. In this case, the data to be analysed is fed to the function 
regular_expressions(file_input) which in turns uses the CommonRegex(input_string) 
function from the CommonRegex library. Once more, the results are saved to local 
data structures.  
 

When the previously described pipeline is finished, all the discovered information is ready to 
be sent back to the requester or displayed in the console (the latter, in the case of this interim 
version). Since one of the PDA’s proposed features for the version is “Preliminary PII Analysis: 
Through NLP tools, identify named entities (to be defined)”, the current pipeline fulfils the 
objective. 

  
7) ML Reasoning Unit 

The machine learning reasoning unit is where the evaluation of all the previously gathered 
information takes place. Machine learning algorithms (e.g., supervised learning or decision 
trees) and pre-defined rules are used to assess the relationships between the newly 
discovered entities, infer privacy violations and so forth. This component is not yet 
available for the interim version due to the necessary research and experiments performed 
before. For the final version of the PDA, this component will provide the results back to the 
requester service. Privacy metrics and sensitivity degree of PII fields are also considered 
at this stage. 
 

8) Privacy Metrics 
This component is a repository of privacy metrics that will be used by the PDA after the 
interim version. This repository is intended to allow calculations to be made on the 
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analysed data. Such metrics can be used, for instance, to assess the number and type of 
sensitive attributes in each transaction, the uniqueness of records, or other kinds of 
measures, which allows the PDA to provide accurate estimates about privacy risks. 
 

It is now possible to conclude that all the objectives defined for the PDA interim version were 
achieved. The next section provides the necessary documentation on how to configure and 
deploy the container on the staging environment.  

4.5. Configuration and Deployment 
 
Similar to the RMM module, to follow the 12-factor standards and the choice of Kubernetes 
derived from Work Package 5 (Integration), the configuration of the PDA module happens by 
setting environment variables. Currently, environment variables are passed to the docker build 
tool. However, this is going to change in the final version, as the settings should be supplied 
through the runtime environment in order to prevent secrets from being accessible by 
inspecting the respective containers. Deployment is performed through an OCI container 
image.  
A Dockerfile and a Pipfile execute the necessary commands and set up the required packages 
for the module loading and initialisation. With these two files, the image is seamlessly built and 
the PDA module becomes available. In order to automate the process and use intended image 
registries and code repositories, a make file pulls the PoSeID-on’s Python base image and, 
after building on top of it, pushes the resulting images to the current image repository (i.e., 
Tecnalia’s artifactory).   
A complete list of environment variables will be provided for the final version. The currently 
used environment variables are the following: 
 
_MESSAGE_BUS_PASSWORD 
Password for the RabbitMQ queue connection. 
 
_MESSAGE_BUS_USERNAME 
Username for the RabbitMQ queue connection. 
 
_MESSAGE_BUS_QUEUE_ADDRESS 
Host address for the RabbitMQ queue connection. 
 
_MESSAGE_BUS_QUEUE_PORT 
Port for the RabbitMQ queue connection. 
 
_MESSAGE_BUS_QUEUE_NAME 
Name of the RabbitMQ queue the RMM will connect to. 
 
Additional detail is provided in the PDA code repository. All the necessary python files for each 
component, as well as the Dockerfile, Pipfile, and Makefile used for the configuration and 
deployment of the module, are presented.  
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4.6. Unit Testing and Validation 
 
Due to the priority given towards having a working prototype ready for integration, the current 
stage of development was subject to limited unit testing and validation. Regardless of that fact, 
the main components where informally tested and experimented, which, nevertheless, does 
not provide complete and consistent coverage of all operations. Only critical aspects of certain 
libraries were tested in order to guarantee the proper functioning of the components. The final 
version of the module will undergo all the necessary tests and full validation procedures fully 
completed. 
Similar to the RMM, the PDA will also have unit and integration testing that will be performed 
as part of Work Package 6, which focuses on the testing and evaluation of the PoSeID-on 
platform as a whole. For more information on the roadmap for pilot evaluation and testing, 
deliverable D6.1 [24] can be consulted. 
 
 

5. Integration approach 
 
As it is shown in Figure 1, there are several modules in need of communication and integration. 
Such modules are mainly developed in Python or Java, and rely on the PoSeID-on’s proposed 
communication scheme and integrated environment to communicate with another one. 
Communication-wise, the message flow is supported by the message bus. In terms of 
integration and deployment, there is a staging environment for the interim version. As 
deliverable D5.1 fully details the integration approach, next we only provide an overview of the 
integration approach for the D4.3 modules.  

5.1. Component communication 
The Message Bus is a middleware which leverages communications between the PoSeID-on 
system components, in a decoupled fashion, allowing for the easy addition and removal of 
system components and their communication. In a generic sense, a message bus is a 
combination of a data model for structuring system messages and communications, a 
common command set which specifies the available operations on messages and between 
connected components and a messaging infrastructure in charge of providing the set of 
functionalities associated with the command set. Given the above, it is not expected that the 
message bus is developed by PoSeID-on, as there are several good solutions providing 
message bus functionality already available.  
During the integration discussion in Work Package 5, one of the possibilities that were 
analysed and later chosen to provide the message bus functionality was RabbitMQ [39]. It 
provides functionalities which are well suited to PoSeID-on. For instance: 

• Publish and subscribe to streams of messages, which are similar to message queues; 
• Store streams of records in a fault-tolerant and persistent way; 
• Process streams of records as they occur; 
• High availability. 
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RabbitMQ requires only three or more servers to provide high availability. It is also a lossless 
mechanism and supports Remote Procedure Call (RPC), used for the messages. The node 
performance is, on average, 20,000 msg/sec.  
All the messages flowing through the Message Bus are serialized and dully encrypted. The 
serialization uses Google’s Protocol Buffer [13] due to its simplicity, speed, and efficiency. To 
guarantee the security and privacy of the messages, PoSeID-on employs a custom message 
protocol which uses the Libsodium software library [14] for encryption, decryption, and signing. 
Therefore, all messages are signed with a module-specific ED25519 [40] key and encrypted 
using the respective Curve25519 [41] key. This requirement is applied to the messages of all 
modules integrated with PoSeID-on. 
Besides communication requirements, it is necessary to configure and deploy the modules in 
order to complete the integration. For that purpose, the interim version of the PoSeID-on 
platform has a staging environment which acts as a development environment for integration 
and testing purposes. It is composed by a machine hosted at the datacentre of the Department 
of Informatics Engineering of the University of Coimbra. The staging environment has a 
functional setup comprising Minikube, Docker, and add-ons such as ingress and heapster, 
which together compose the set of the minimum software. 

5.2. Interim version features 
 
Module Feature Description 

PDA Request Handling Process and Extract information for analysis requests 
PDA Supported Data Types Process Structured Data as well as PDF files, TXT, CSV 
PDA Preliminary PII Analysis Through NLP tools, identify named entities 

RMM Message Pre-processing Process the stream of messages received into a relevant 
dataset for analysis 

RMM Identified Risks 
Visualization 

View of the data instances flagged as risks and the regular 
data pattern 

RMM Preliminary Risk Analysis Identification of risk events based on heuristics and clustering 
algorithms applied to the data stream 

Table 14 - Interim Version Features (PDA and RMM) 

To allow for an easier integration, a feature-set was defined for the interim version of the two 
modules, listed in Table 14. At the current stage of development, the interim version of the 
PDA is able to receive requests, process and extract the respective information. It is also 
capable of processing structured information like direct messages or RPC messages, and 
different file types such as PDF, TXT and CSV. Finally, it is also able to search and identify 
named entities within the processed data. Regarding the RMM, at its current stage it is also 
able to receive requests, process and extract the information from messages and run the 
parsing and feature extraction steps on the received data. Due to the implementation of a 
custom version of the log parsing algorithm, development was delayed by two weeks, and in 
the end the expected features fell short, as we cannot yet run the risk analysis and subsequent 
results visualization. This is a minor step, however, which will be implemented in the upcoming 
weeks, and results up until the anomaly detection step are already being shown and working 
successfully.  
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5.3. Final version features 
For the final version of the modules, the remaining requirements must be met for each module. 
As such, for the Risk Management Module, the following features will be added: 

• Anomaly detection 
o Finishing the stream layer anomaly detection pipeline 
o Implementing the batch layer anomaly detection 

• Persistent storage for: 
o Received and parsed logs 
o Feature vectors 
o Analysis results 
o Data Processor reputation metrics 

 
For the Personal Data Analyser, it is necessary to complete the following features: 

• PII Discovery  
o Usage of improved NLP models 
o Multi-language capabilities 

• Privacy Analysis 
o Analyse PII  

§ Privacy Metrics 
§ PII type sensitiveness  

o Analyse PII correlations 
§ Likelihood of exposure by having access to specific PII types  

o Request DP reputation to RMM 
§ Upon initialization, request DP reputation list to RMM 
§ Receive from RMM module the DP reputation list updates  

o Creation of rules / models 
§ Setting privacy thresholds for warning generation 

 
For both modules it is also necessary to guarantee the following: 

• Communication 
o RPC handling for result delivery 
o RPC handling for DP metrics delivery 
o Notification of Data Subjects and Processors in case of risk/privacy detection 

• Security 
o Configuration of the modules dependencies and frameworks must be 

implemented in a way that ensures the proper levels of security in production 
• Unit testing 

o Automated tests for critical functionalities of the module will be implemented 
• Deployment and configuration 

o Configuration of the module for scalable deployment using multiple instances 
o Documentation for the deployment configurations of the module 

 
From the listing presented before, it is possible to conclude that several requirements involving 
security, testing, validation or configuration are transversal to both modules. Other 
requirements are more specific and related to particularities of risk and privacy exposures.  
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6. Innovation Summary 
 
To summarize the contributions of both modules, the innovative aspects of each are presented 
in this section.  
The Risk Management Module novelty revolves around the identification of privacy 
exposure risks by using anomaly detection on system logs and operational information, which, 
as far as we know, is a completely novel area. In addition, we will score data processors based 
on their interaction with data subjects’ PII and interaction with the PoSeID-on system, 
according to the anomaly detection results. Finally, the implementation of an open-source 
module for log anomaly detection, with a complete pipeline ready for production, is also a 
major contribution to both the log anomaly detection field and the privacy field, with the 
concrete application of results for the purpose of privacy enhancement. 
The Personal Data Analyzer is a fully GDPR-compliant monitoring module for personal data 
transactions (PII). To achieve this goal, the PDA uses NLP (NLU / NLR) and Machine Learning 
to perform identification and classification of PII. Moreover, it provides privacy analysis 
and scores based on the types of PII exchanged, their sensitiveness, the reputation of the 
involved Data Processors, and privacy metrics. Such guarantees are easily verified, since not 
only it a fully GDPR-compliant tool, but it is also open source and, therefore, its code can be 
verified by anyone. Its innovation also relies on the kind of guarantees it provides, while 
processing of personal information: it never stores any information and only processes PII with 
the explicit consent provided by data owners. Such combination of features results in a very 
innovative and transparent kind of application, that is capable of processing sensitive data 
while assuring privacy guarantees. 
 
 

7. Conclusion and future work 
 
This document presented details of the interim implementation of two central modules in the 
PoSeID-on system, namely the Risk Management Module and the Personal Data analyser 
module. Implementation details include low-level component description, functionalities and 
dependencies. Moreover, the NLP experimental research was presented and analysed in 
depth.  According to the adopted document structure, after presenting the module’s 
implementation details, it is provided the necessary documentation regarding configuration 
and deployment of the modules, as well as the integration approach that was followed.  
The proposed features were fulfilled for the PDA and partially fulfilled for the RMM. The 
development process continues towards the final version of the modules. Therefore, the next 
steps for the PDA are to propose custom-build AI models capable of identifying previously 
non-identified PII and perform compliance verifications in order to verify compliance and 
provide automated privacy assurances to data owners. For the RMM, the development of the 
features which had some delay will continue as well as the development of the batch counter-
part of the anomaly detection and the display and processing the results to be used in the 
Dashboard. 
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